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ABSTRACT 
The blast loads have in most cases not been assumed as design basis loads of nuclear 

power plant buildings and structures. Recent developments however stimulated a number of 

analyses quantifying the potential effects of such loads. 

An effort was therefore made by the authors to revisit simple and robust structural 

analysis methods and to propose their use in the vulnerability assessment of blast-loaded 

structures. The leading idea is to break the structure into a set of typical structural elements, 

for which the response is estimated by the use of slightly modified handbook formulas. The 

proposed method includes provisions to predict the inelastic response and failure. Simplicity 

and versatility of the method facilitate its use in structural reliability calculations. 

The most important aspects of the proposed method are presented along with 

illustrative sample applications demonstrating: 

• results comparable to full scale dynamic simulations using explicit finite element 

codes and 

• the performance of the method in screening the existing structures and providing 

the structural reliability information for the vulnerability analysis. 
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1 INTRODUCTION  
Significant worldwide efforts have been recently devoted to the increased security of 

nuclear power plants (NPP) (see for example Čepin et al, 2002). In particular, potential 

vulnerability to the external events has been revisited and analyzed in greater detail. The first 

studies of the kind scrutinized the experience from military threats to a nuclear power plant in 

the year 1991 (Stritar et al, 1991). More recent examples investigate threats posed by the 

crash of commercial aircrafts (Jovall, 2007) or by the explosion of a vehicle bomb (Čepin et 

al, 2006).  

A vulnerability analysis of a complex industrial facility such as for example nuclear 

power plant requires a rather broad scope of investigations. As an example, slightly modified 

PSA/PRA methods may be successfully used to analyze the consequences of a potentially 

successful threat. An important part of input to the consequence analysis is assessment of 

potential damage to the buildings and the equipment housed in the potentially damaged 

buildings.  

An effort was therefore made by the authors to revisit simple and robust structural 

analysis methods and to propose their use in the vulnerability assessment of blast-loaded 

structures. For this purpose, the structure is broken down into a set of typical structural 

elements, for which the response is estimated by the use of slightly modified handbook 

formulas. The proposed method includes basic provisions to predict the inelastic response and 

failure. Simplicity and versatility of the method facilitate its use in structural reliability 

calculations. 

Complex simulations of interactions between blast, buildings and internal 

structures/systems are beyond the scope of this paper. 
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2 MODEL 
The basic loading imposed on the structures by the remote explosions is the blast with 

approximately spherical pressure waves. The dominant damage effects considered in his paper 

are attributed to the positive overpressure. The negative pressure pulse, possible focusing of 

the blast, fragments generated by the explosive device etc. are outside the scope of this paper. 

The main parameters describing the blast loading are the sudden peak overpressure 

pmax and the decay the overpressure phase. Two decay forms are of particular interest here: 

exponential, which is well known to accurately approximate the observed decay:  
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t represents time, td the duration of the overpressure pulse, and Θ the Heaviside theta function. 

Both decay curves (Figure 1) have been chosen to result in identical pressure impulses I: 

( ) dtpdttpI ⋅⋅== ∫ max2
1 . (3)

The distance between the bomb and the target is assumed to be large enough to 

develop the pressure waves, which are essentially parallel to the target wall. Such an 

assumption seems to be conservative also for bombs closer to the target, of course taking into 

account the much stronger reflection of the pressure wave due to the vicinity of the bomb in 

accordance with the models applied in (WST 3.4). 

The overpressure reflected from the wall parallel to the overpressure wave is 

conservatively assumed in all calculations, as obtained from (WST 3.4). Other incident angles 

are not taken into account since they result in lower blast loadings to the structure (Smith & 

Hetherington, 1994). 

2.1 Model of a building 

The blast loading on the buildings is to the first approximation taken by the vertical 

walls, representing the vast majority of the building outside surface. The vertical walls are 

typically supported with internal walls, columns, podiums, etc. With respect to an outside 

blast, the stiffness of such supports is much higher than the stiffness of the wall.  
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A reasonable representative model for a building is therefore a set of wall segments. 

For the simplicity, a homogeneous isotropic rectangular plate clamped at all four sides is 

chosen to represent each wall segment. The size of the plate is defined with the distance 

between supports. 

The first natural frequency f or period T of the clamped rectangular plate of width a, 

length b and thickness h is then defined as (Harris & Crede, 1976): 
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BBa is shape factor, outlined in , E Young’s modulus, ν Poisson ratio and ρ density. The 

maximum static deflection of the plate loaded with uniform pressure p is further estimated as 

(Beitz & Küttner, 1981): 
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Maximal stresses at the center and clamped border of the plate are given as (Beitz & 

Küttner, 1981): 
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Shape factors C2, C3 and C5 are given in Table 1. It is clear from Table 1 that the 

maximum stress in the plate will always occur close to the middle of the longest clamped side. 

Additionally, plate with side length aspect ratio of about 2 seems to be a reasonably 

representative choice for most practical purposes. 

2.2 Equivalent 1-D oscilator 

It is customary to assume that an equivalent 1-D oscillator provides reasonable 

approximation of the motion (Smith & Hetherington, 1994) of the plate due to the blast 

loading. Neglecting the damping, the 1-D oscillator is defined as: 

)(tFxkxm EEE =+&& . (8)

mE an kE represent the equivalent mass and equivalent stiffness of the system and FE(t) 

the equivalent forcing function. x and represent displacement and acceleration, respectively. x&&

Parametric description of pressure decay curves in eqs. (1) and (2) allows 

parameterization of the equivalent forcing function: 
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maxmax,)()( pFtptF EE ∝⇒∝ . (9)

Solution of equation (8) is now, assuming zero initial displacement and velocity, 

straightforward. For exponential decay (eq. (1)) it follows that: 
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Similarly, for linear decay (eq. (2)): 
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for t > td. Note that ω=√(kE /mE). 

Equivalence of the 1-D oscillator requires equality of the kinetic and deformation 

energy and the work of the external forces of the clamped plate and the oscillator. The kinetic 

EK and deformation energy ED of the plate are given as: 
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The work of the external forces EF is given as: 
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In order to estimate the deformation and kinetic energies of the deformed plate, it is 

useful to assume the distribution of the plate deflections in a simple form, satisfying the 

clamped boundary conditions. Two rather obvious examples resulting in closed form 

solutions for plate energy are polynomial: 
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and cosine approximation: 
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The polynomial distribution is depicted in Figure 2.  

Now, the parameters of the equivalent oscillator are given as 
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The difference between both distributions is expected to be rather small (Smith & 

Hetherington, 1994). It is shown above that the equivalence factors derived by both 

assumptions vary for about 10 to 15%. This is also the maximum error expected in the 

estimated plate energies. The cosinus distribution of deflections stores slightly less energy in 

the plate and therefore makes the plate relatively more vulnerable as the polynomial 

distribution. 

2.3 Limits of the equivalent 1-D oscillator 

The dynamic response depends heavily on the duration of the overpressure phase td as 

compared to the period of the structure T. Two limiting cases exist: 

• The period longer than overpressure phase (T > 2,5 td). The impulsive loading prevails 

leading to the balance of kinetic EK and deformation energy ED of the structure. This 

in turn leads to the maximum dynamic deflection of the (elastic) plate wD: 

E

E
dD k

Ftw ω
2
1

= . (21)

• The period shorter than overpressure (40 T < td). The loading on the plate is safely 

assumed to be quasi static. The quasi static maximum plate deflection then follows 

directly from the stiffness and external loading of the plate, taking into account the 

well known dynamic load factor of 2 (Smith & Hetherington, 1994): 

E

E
QS k

Fw 2= . (22)
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2.4 Damage estimates 

Basically, the equations above assume that the load carrying capacity of the wall is 

characterized by the strain energy and is estimated using available elastic solutions for 

(clamped) plates. The plastic or irreversible deformation energy is accounted for using the 

ductility ratio m (Mays & Smith, 1995) between the actual deformation energy stored in the 

wall and the maximum elastic deformation energy stored at the on-set of yielding or initiation 

of damage. 

The yield strength σY is taken here as a measure of the deformation energy which can 

be stored in the material in a reversible manner, i.e., without yielding or damage. Eqs. (6) and 

(7) at the limit of b/a→ ∞ then lead to the maximum reversible deflection of the wall: 

8
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The ductility ratio of the given load is then estimated using: 
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D

w
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for the dynamic and 

EL
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w
w

m =  (25)

for the quasi static loads. 

Three qualitative levels of damage possibly experienced by the building are then 

estimated as: 

• no damage –purely reversible response with m ≤ 1; 

• wall collapse denotes a severe damage of the wall, described by wall collapse of wall 

destruction. It is assumed to occur when the strain energy in the plate exceeds the 

reversible strain energy by a factor of mC (m > mC); 

• destroy systems and/or structures in the first compartment immediately after the 

collapsed wall. Here it is assumed that at least the amount of blast energy needed for 

wall collapse shall remain available to destroy the systems in the first compartment 

behind the collapsed/destroyed wall (m > 2 mC). 

The selection of values for σY  and mC is crucial for the validity of the procedure and 

may be based for example on engineering judgment, a detailed analysis of a very complex 

material behavior and last, but not least, on experimental data. As a very rough guide, ductile 

structural steel with yield strength of σY will be reasonably described with mC of 20. For 
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reinforced concrete structures with compressive strength equal to σY, value of 2-3 may be 

appropriate. Alternatively: if σY is chosen to represent the tensile strength of the concrete 

(typically about 10% of the compressive strength), mC of 20 could be a reasonable choice 

representing reinforced concrete.  
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3 COMPARISON WITH FINITE ELEMENT SOLUTIONS 
A sensitivity analysis has been performed using explicit finite element code 

ABAQUS/Explicit (ABAQUS 6.5.1). The finite element results were compared with the 

results obtained by the 1-D equivalent oscillator. The sensitivity analysis included the 

following variations of the input data: 

• Geometry: square and rectangular plate with dimensions 5 by 5 by 0,1 m and 10 by 5 

by 0,1 m were analyzed. The finite element consisted of linear 3-D elements of typical 

size of about 0,25 by 0,25 by 0,05 m.  

• Loading: The peak overpressure pmax was held constant at 1 bar (0,1 MPa). The 

overpressure duration td was varied as a function of the first natural period as indicated 

in Table 2. Both exponential and linear pressure decay (eqs. (1) and (2), respectively) 

were used in the analyses. 

• Material: A homogeneous and isotropic approximation of the reinforced concrete was 

assumed with ρ = 3000 kg/m3, E = 15 GPa and ν = 0,2. Both elastic and elastic-ideally 

plastic analyses with yield strength of 5 MPa were performed. 

As a general rule, the linear decay of pressure (eq. (2)) was found to consistently 

produce slightly larger deflection than the exponential (eq. (1)). This is noted in both 1-D and 

finite element solution and is attributed to the conservative nature of the linear decay, which 

delivers the pressure impulse to the structure in shorter time as compared to the exponential 

decay. The discussion of the results below is therefore limited to those obtained using linear 

pressure decay (eq. (2)) in both finite element model and equivalent oscillator. Also, as 

already noted in section  2.3, the cosine approximation of the plate deflection is deemed 

representative for the equivalent oscillator. 

Comparison of maximum plate deflections estimated by the equivalent oscillator with 

elastic and elastic-plastic finite element calculations are depicted in Figure 3, Figure 4 and 

Figure 5. Very good agreement of all compared models is shown for short overpressure 

phases in Figure 3 and Figure 4. Rather short overpressure phases result in relatively small 

deflections, and consequently, in negligible influence of plastic deformations, which are 

localized within the pate. The suggested limiting value of dynamic deflection, given in eq. 

(21) is clearly a valid limit also for all models analyzed in this paper. It is concluded that at 

short overpressure phases both equivalent oscillator and finite element model give very 

comparable results. The 1-D equivalent oscillator is therefore concluded to be an accurate, 

reliable and very robust method. 
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For longer overpressure phases, the results of the equivalent oscillator and the finite 

element solutions differ considerably (Figure 5). Rather long duration of the overpressure 

caused significant increase in the maximum plate deflection amplitude. This in turn caused 

significant amount of plastic deformation, which is basically shown as significant reduction of 

the amplitude after the first oscillation of the plate. Nevertheless, the maximum amplitude of 

both finite element models is clearly overestimated by the 1-D oscillator, which tends to obey 

the quasystatic limit suggested in eq. (22). The equivalent oscillator is concluded to be 

conservative here. As a consequence, the vulnerability estimates of the equivalent estimators 

may be considered unrealistically severe. Detailed analyses should be given priority in such 

cases. 

The 1-D equivalent oscillator is therefore shown to be a simple, reliable and robust 

tool for fast assessment of impulsively blast-loaded plates. 
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4 VULNERABILITY ANALYSIS 
The above structural assessment method has been implemented in the vulnerability 

analysis of a generic and simplified industrial facility (e.g., nuclear power plant) to a 

deliberately caused damage (see Figure 6). The particular damage source studied was an 

explosion of a device brought to the location by land transport. A broad sensitivity study 

varying the amount and position of the explosive has been conducted to assess the 

vulnerability of the facility and to set up the basis for an effective protection (Čepin et al, 

2006).  

The results shown hereafter are intended to be illustrative and therefore correct in the 

qualitative but not always quantitative sense to avoid possible misuse. Quantitative values of 

the selected resulting parameters are deliberately not shown to scale neither in Figures nor in 

the text. 

4.1 Buildings and systems fragility 

In the first step it is necessary to identify: 

• plant buildings, their location and their blast response properties, 

• systems important to safety and their location. It is especially important to locate the 

systems, which are at least in part located in the first compartments behind the outside 

wall. 

The buildings in a typical NPP with Pressurized Water Reactor (PWR), which are 

important for the technological processes and plant safety, may be divided in two broad 

categories: 

• Reinforced concrete buildings with walls made of reinforced concrete. 

• Steel frame buildings with metal sheet walls. 

As the blast loading decreases with the distance from the explosion, it is possible to 

estimate the stand-off distances for each type of the buildings analyzed (see Figure 7). The 

simple structural models described in section  2 have been used to estimate the stand of 

distances for “no damage”, “wall collapse” and “systems destroyed”. In other words, given 

the properties of the wall and the location, mass and type of the explosive device, we may use 

the above simplified models to predict the level of damage on the structure and systems 

contained in the structure.  
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The component and system fragility analysis takes place only in buildings or behind 

the walls with damage levels “wall collapse” and/or “destroy systems”. For the buildings with 

damage level “wall collapse”, immediate failure was assumed for the equipment, which is: 

• mounted on the collapsed wall; 

• sensitive to the air pressure or on change of air pressure in its vicinity.  

For the buildings with damage level “destroy systems”, immediate failure was 

assumed for all equipment in the first compartment behind the damaged wall. 

4.2 Results 

Figure 8 shows the stand-off distances for a selected bomb placed inside the controlled 

area but outside of the technological buildings. Each stand off distance divides the area 

around the target in a distant safe and a near unsafe zone. 

The dashed thin and thick black lines show the “no damage” and “collapse” stand-off 

distances, which are typical for the steel frame building. The solid thin and thick black lines 

denote the “no damage” and “collapse” stand-off distances for reinforced concrete plates of 

different wall thicknesses. All stand-off distances are plotted around respective buildings.  

The stand-off distances for human injuries were determined and plotted around the 

centre of the office. The dashed and solid gray lines denote the distances for eardrum rupture 

probability 50 % and lung damage death probability 50 % inside the office if the vehicle 

bomb would be at the location of the corresponding gray contour line. It was assumed that the 

blast parameters in the office are like they would be in a free-air hemisphere without any 

obstacles. This is probably much too conservative, since the office is located quite inside the 

building and a blast entering from a “free field” into branched channels rapidly looses its 

power. Therefore the gray human injury contour lines should be regarded only as very 

conservative bounds. They are presented mainly to give us an impression about human injury 

damage distances in free air, and therefore they are plotted also inside the buildings, where a 

vehicle bomb could not be located. It is however worth noting that injuries and casualties 

among the facility staff are likely to affect the performance of the plant operators (if the 

example facility would be a NPP). 

The stand-off distances for system failure were determined according to the wall 

thickness of the concrete buildings inside which the systems are located, using the calculated 

damage distances. The stand-off distances for system failure are denoted with the extra thick 

black lines, which are plotted near the concrete building walls. If the bomb would be located 
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between the stand-off distances for system failure and the building, the system inside the 

building would be destroyed. 

The stand-off distances were plotted in such a way that it is possible to establish to 

which part of the building they belong (the contour lines were not cut off at their 

intersections). 
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5 CONCLUSIONS  
Simple and robust structural analysis methods have been revisited and proposed for 

use in the vulnerability assessment of blast-loaded structures. The leading idea was to break 

the structure into a set of typical structural elements, for which the response is estimated by 

the use of slightly modified handbook formulas. The proposed method includes basic 

provisions to predict the inelastic response and failure. 

The most important aspects of the proposed method are presented along with 

illustrative sample applications demonstrating results comparable to full scale dynamic 

simulations using explicit finite element codes. 

The performance of the method is illustrated in the vulnerability analysis of a generic 

and simplified industrial facility, e.g., nuclear power plant, to a deliberately caused damage. 

Simplicity and versatility of the method facilitate its use in structural reliability calculations. 
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Figure 1 Pressure decay curves (blue/full – exponential, red/dotted – linear) 

 
Figure 2 Deflections of the (square) plate 
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Figure 3 Deflections of the rectangular plate (very short overpressure phase td = 0,01 T) 
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Figure 4 Deflections of the rectangular plate (short overpressure phase td = 0,1 T) 
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Figure 5 Deflections of the rectangular plate (long overpressure phase td = 10 T) 
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Figure 6 Ground Plan of the Example Facility with Building 
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Figure 7 Stand-off distances around a selected bomb. The distances are not to scale 

 
Figure 8 Stand-off distances for a selected bomb inside the controlled area. The 

distances are not to scale 
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TABLES 
Table 1 Shape factors (Harris & Crede, 1976), (Beitz & Küttner, 1981) 

b/a 1.0 1.5 2.0 2.5 3.0 ∞ 
C2 0.53 0.88 0.94  
C3 0.225 0.394 0.431 0.455 
C5 1.24 1.82 1.92 2.0 
BBa 35.98 24.57 23.77 23.77 23.19 22.37 
D 0.0043 0.0111 0.0147  

 

Table 2 Periods and overpressure durations 

Overpressure 
duration td  

Square plate 
T = 0,0665 s 

Rectangular plate 
T = 0,0967 s 

td = 0,01 T 0,000665 s 0,000967 s 

td = 0,1 T 0,00665 s 0,00967 s 

td = 1 T 0,0665 s 0,0967 s 

td = 10 T 0,665 s 0,967 s 

td = 100 T 6,65 s 9,67 s 

 

 21/21 


	Keywords 
	ABSTRACT 
	1 INTRODUCTION  
	1  
	2 MODEL 
	2.1 Model of a building 
	2.2 Equivalent 1-D oscilator 
	2.3 Limits of the equivalent 1-D oscillator 
	2.4 Damage estimates 
	1  
	3 COMPARISON WITH FINITE ELEMENT SOLUTIONS 
	1  
	4 VULNERABILITY ANALYSIS 
	4.1 Buildings and systems fragility 
	4.2 Results 

	1  
	5 CONCLUSIONS  
	1  
	6 REFERENCES  
	LIST OF FIGURES 
	 
	FIGURES 
	TABLES 


