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Abstract

The concept of Voronoi tessellation has recently been extensively used in materials science,
especially to model the geometrical features of random microstructures like aggregates of
grains in polycrystals, patterns of intergranular cracks and composites. Solution of the
underlying field equations usually requires use of numerical methods such as finite elements.

The framework for automatic generation of quadrilateral finite element meshing of planar
Voronoi tessellation is proposed in the paper, resulting in a powerful set of tools to be used in
the rather wide field of micromechanics. As far as feasible, the implementation of features
built in commercially available mesh generators was pursued. Additionally, the minimum
geometric requirements for a “meshable” tessellation are outlined.

Special attention is given to the meshes, which enable explicit modelling of grain boundary
processes, such as for example contact (closure of cracks) or friction between grains. This is
inline with numerical examples, which are oriented towards the fracture mechanics, in
particular to the development of intergranular microcracks and/or their impact on the effective
behaviour of the polycrystal.

The examples were evaluated using the commercially available general-purpose finite
element code ABAQUS. The usual continuum mechanics based numerical methods and
boundary conditions were safely applied to aggregates of randomly oriented polycrystals with
anisotropic elastic material behavior as computational domains.
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1 INTRODUCTION

A Voronoi tessellation represents a cell structure constructed from a Poisson point process by
introducing planar cell walls perpendicular to lines connecting neighbouring points. This
results in a set of convex polygons/polyhedra embedding the points and their domains of
attraction, which completely fill up the underlying space (an example is given in Fig. 2a). A
survey about mathematical foundations and a variety of applications in different fields of
science can be found for example in [1] or [2].

The concept of Voronoi tessellation has recently been extensively used in materials science,
especially to model random microstructures like aggregates of grains in polycrystals, patterns
of intergranular cracks and composites. Some examples of applications are calculation of
properties of damaged [3] and non-damaged polycrystals [4], characterisation of fibre-
reinforced composites [4] simulation of microcrack nucleation and propagation in creep [6],
[7], thermal fatigue [8] and intergranular stress-corrosion [9].

The applications of Voronoi tessellation are however not restricted to mechanical problems.
Among others, simulation of magnetisation process in microstructures was performed [10].
Another possible application is to compute domain switching in ferroelectrica, as has been
done with three-dimensional finite element simulation, but only with one cuboid element for
each grain in [11].

In the above examples, the Voronoi tessellation was applied to model the geometrical features
of the problems. In the examples it is necessary to solve the underlying field equations. In
some special cases, satisfactory use of analytical [12] and empirical [8] solutions was feasible.
Nevertheless, use of analytical or empirical approaches could severely limit the complexity of
the analysis.

Therefore, use of general numerical methods such as for example finite or boundary elements
may be necessary to obtain more accurate results. Examples of such applications are
available:
• Simplified models, such as for example [13]: rigid grains, represented by Voronoi

tessellation are connected to their neighbours with springs representing grain boundary
conditions;

• 2-D finite element analysis, such as for example meshing of hexagonal grains with
randomly moved vertices in [14];

• 3-D finite element analyses. Typically, the published analyses refrain from explicit
modelling of grain boundaries. More common approach would be, for example, building a
finite element mesh from cuboids and then assign the Gaussian point of elements to
different grains, e.g., use different material properties [15], [16]. However, an example of
using a 3-D Voronoi tessellation meshed by tetragonal elements is given in [10].

Application of finite element method requires discretization of the geometry into triangles,
quadrilaterals or general convex polygons. The discretization with triangles is straightforward.
This is because Voronoi tessellation is a dual of the Delaunay triangulation [2], which is a
well-known partitioning method used in finite element mesh generation. On the other hand,
the numerical quality of triangular finite elements is generally poor. Therefore, this topic will
not be pursued further here. Another possibility is to use finite elements, which assume the
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shape of random Voronoi polygons (e.g., [17]). Obvious elegance of this approach
unfortunately introduces some disadvantages, in particular, difficult if not impossible mesh
refinements along grain boundaries. The quadrilateral elements were therefore chosen for
further discussion.

In this paper, the framework for automatic generation of quadrilateral meshing of random
grains is proposed, resulting in a powerful set of tools to be used in the rather wide field of
micromechanics. The numerical examples are however oriented towards the fracture
mechanics, in particular to the development of intergranular microcracks, their impact on the
effective behaviour of the polycrystal and to the analysis of some stochastic properties of
local stress fields in damaged and intact polycrystals.

Special attention is given to the of meshes, which enable modelling of grain boundary
processes, such as for example contact (closure of cracks) or friction between grains. As far as
feasible, the implementation of features built in commercially available mesh generators
PATRAN [18] and CadFIX [19] was pursued. The current algorithms specialise in planar
tessellation. This is because the computational efforts devoted to meshing and subsequent
numerical solution of planar models easily outgrew the available resources. Meshing of about
1000 grains (e.g., about 0,1 mm2 of area assuming 30 µm average grain size) requires some
35,000 to 40,000 finite elements. Generalisations to 3-D are nevertheless straightforward,
pending further developments in computational hardware.

The performance of the proposed algorithms is demonstrated with two examples using the
commercially available general-purpose finite element code ABAQUS [20]. All tessellations
used in this paper were generated by the code VorTess [21].
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2 MESHING

Interactive generation of a suitable finite element mesh of a large Voronoi tessellation (e.g.,
more than 100 grains-polygons) represents a rather challenging task. Moreover, a rather large
number of consecutive analyses with different realisations of randomly shaped grain
aggregates may be needed to obtain reliable estimates of probabilistic parameters. Therefore,
an automatic meshing algorithm as described below is a necessity.

2.1  “Meshable” Tessellation

One of the basic requirements for reliable finite element analysis is suitable shape of the finite
elements in the mesh. In the present meshing algorithms, we rely on planar quadrilateral
elements. For them, the tolerable distortion from ideally square shape is limited [18]. The
limits depend on the type of the analysis and the finite elements used.

Only a subset of all possible tessellations is meshable with quadrilateral elements. This subset
of “meshable” tessellations has the following properties: (1) all angles within polygons
exceed 30° and (2) the maximum aspect ratio of the shortest and longest line within a single
polygon is lower than a critical value. No strict limit has however been defined for the aspect
ratio. We were able to mesh polygons with aspect ratio up to 1:500, provided that sufficiently
small element sizes, and consequently very large number of elements (e.g., 20 or more per
average polygon), were used.

The “meshable” tessellation, i.e. one with sufficiently small polygon aspect ratio and
sufficiently large polygon angles, is simply obtained by the trial-and-error method. A series of
realisations of tessellation is calculated and checked for the minimum requirements. The
expected number of trials needed to obtain a suitable tessellation is plotted in Fig. 1 as a
function of number of polygons and required aspect ratio. The expectations (lines) in Fig. 1
are obtained as fit to a finite set of successful trials, indicated by symbols. Fig. 1 suggests that
about 106 trials will be needed to obtain a tessellation with 1000 points with maximum aspect
ratio less than 1:100. The selection of “meshable” tessellations does not affect typical
statistical tessellation properties and serves only to facilitate the meshing procedure.

The bias introduced in the analysis by selecting only “meshable” tessellations is judged to be
small compared to the error caused by the 2-D approximation of grain structure. This was
further supported by numerical analysis of variances of the cell areas of the complete set of all
and the reduced set of “meshable” Voronoi tessellations, which turned out to be
approximately equal [4].
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Fig. 1 Expected number of trials required to get a “meshable” tessellation.

2.2 Quadrilateral meshing of Voronoi polygons

The meshing strategy adopted in this paper is to mesh each grain as a separate body. This
creates very useful framework for keeping track of the individual grains (to assign for
example different random orientation of the crystallographic axes to each grain) and
individual grain boundaries (e.g., to define possible and trace actual paths of intergranular
cracks).

The geometry of each Voronoi polygon is described in terms of its vertices. These
geometrical data are transferred via an interfacing computer code to the selected mesh
generator (PATRAN, CadFIX) to form points (vertices), lines (polygon boundaries, grain
boundaries) and surfaces (polygons, grains).

The mesh seed at a line (polygon boundary) of length l is calculated as l/emin, where emin

represents the desired minimal length of the element edge. The shortest line in the tessellation
gives an upper bound for emin. The selection of emin may also depend on the desired numerical
accuracy of the analysis and the size of the problem. This proceeding assures that meshes fit
together at the borders of neighbouring polygons. To get a finer mesh at the vertices, a
variable mesh seed can be introduced which increases towards the middle part of the grain.

Meshing of the tessellation is at this stage performed automatically by the selected mesh
generator (see Fig. 2).
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Fig. 2 a) Voronoi tessellation with 40 cells and the respective Poisson points. b) Finite
element mesh for this tessellation.

2.3 Mesh refinements at grain boundaries

Grain boundaries may be a source of discontinuities originating from processes within the
grains and/or at the grain boundary level due to the anisotropy of the grains and the random
orientation of the crystallographic axes. Mesh refinement in grain boundary regions
contributes significantly to the convergence and/or reliability of finite element solution. This
section describes an advanced algorithm, developed to generate a refined mesh along all grain
boundaries in the tessellation (Fig. 3)[32].

1. The number of requiered elements A along each grain boundary surface is given according
to

min3
min3 e

n
l

A
Nn

−=
∈

. (1)

As A depends only on the length l of the grain boundary, the compatibility of meshes of
neighbouring grains is ensured. The value of n has to be chosen in a way that A becomes
minimal.

2. The vertices of each polygon are projected by a distance of 2emin along the centreline of the
angle. An inner polygon is created with these projected vertices. This imposes an upper bound
of emin due to the requirement, that both inner and outer polygon are convex with the same
number of vertices. The mesh with the lowest number of elements is obtained by selecting
emin at about 95% of this upper bound. Increasing the required minimal length for “meshable”
tessellations may further reduce the number of elements.

3. All inner polygons are meshed as described in Section 2.2.

4. The area between the outer and inner polygon is divided into a series of quadrilateral
surfaces. Those surfaces are meshed with four elements each, so that the element length at the
boundary of the inner polygon is three times higher than at the boundary of the outer polygon
(see shaded area in Fig. 3a). This is possible, as A is divisible by three.
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5. Sharp angles between the vertices of the Voronoi polygons may cause severe distortion of
elements in the vicinity of vertices. To avoid such problems, a special strategy for meshing
such corners was developed:
• We calculate the distances of the projected inner vertex to the original vertex and to every

third of the neighbouring nodes on the adjoining grain boundaries (full circles in Fig. 3).
• If the original vertex leads to the smallest distance the angle is big enough and no special

treatment is needed. Otherwise an additional surface is created between the original
vertex, the inner vertex and the nodes located at the two adjoining outer boundaries with
minimal distance to the original vertex.

• The additional surface is meshed by the selected mesh generator and results in quite
regularly shaped elements in this critical region.

The modular structure of the above algorithm is also very easily applied in other cases. For
example, some problems may require mesh refinements only at vertices. In such cases it is
possible to refine mesh only in the vicinity of the vertices and mesh the surfaces along the
borders with one element instead of four. This may be reasonable while modelling for
example contact with friction, since the numerical effort increases drastically for each
additional contact element at grain boundaries. With slight modifications, the above algorithm
may be also used to mesh collapsed finite elements (crack tip singularities).

Fig. 3 Finite element mesh with mesh refinement at grain boundaries.

2.4 Mesh connectivity at grain boundaries

Grains, meshed as independent bodies, can be connected together in a variety of ways. The
simplest procedure collapses the coincident nodes on grain boundaries. In some applications
(e.g., crack closure with or without friction and sliding of grain boundaries in creep damage)
it is useful to maintain the independence of the grain boundary nodes and connect them with
some grain boundary specific models. Some possibilities would be:
• Gluing the adjoined grains by a series of constraints. This may for example enable the

finite element solver to distinguish between failed and intact grain boundaries;
• Introducing the contact or interface elements between adjoined different grains. This may

enable simulation of complex material behaviour at the grain boundaries [4].
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The above approaches are applicable to sections 2.2 and 2.3 but lead to substantial increase in
the computational effort required for the finite element solution.

2.5 LOADING AND BOUNDARY CONDITIONS

In a real polycrystal the stress and strain fields are affected by the random grain structure. If a
certain grain aggregate within the material is selected, the boundary conditions of that
aggregate are unknown. In micromechanics, boundary conditions are selected in a way that
certain energy requirements are fulfilled. This leads to three classes of boundary condition
which are characterized by either imposed homogeneous stresses or strains or by selection of
periodic arrangements.
According to Hill [22] the homogeneous strain and stress boundary conditions lead to upper
and lower bound limits for effective material properties.

An example of potential variability in results obtained by the use of different boundary
conditions is shown in Fig. 7b. It is however to be noted that the difference is levelling out
with increased number of analysed grains. Therefore, the usual stress or displacement
controlled boundary conditions can be safely applied to a computational domain, which is
large enough to be isotropic in a macroscopic sense.
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3 NUMERICAL EXAMPLES

This section describes the basic ideas and results of two applications of Voronoi tessellation,
which relied on finite element meshing as described above.

3.1 Local Fields and Effective Properties of Polycrystals

The effective material properties (e.g. Young’s modulus, shear modulus) are calculated from
the parameters of a single crystal. Only a brief description of the method is given hereafter for
completeness. Reader is referred to [23] for additional details.

An important application of the method proposed in [23] is estimation of the scatter of the
stress- and strain fields at the micro scale. This is of special importance for example in the
field of micro systems technology, where the length of components is in the order of a few
grains. Of course, the anisotropy and the scatter of the material parameters is of utmost
importance there.

The investigations are based on the consideration of a representative volume element (RVE).
The RVE represents a statistical representative microstructure of the material. The volume
averaging of strain and stress field within RVE leads to effective or overall properties of the
material at the macroscopic level.

The random grain structure of a polycrystal is modeled as discussed in Section 2 with the help
of planar Voronoi tessellation. Each Voronoi polygon is considered as a grain with
anisotropic elastic material behavior and a random orientation of the crystallographic axes.
The orientation is specified with the well-known Euler angles θψ ,  and ϕ  which are assumed
to be random variables. ψ  and ϕ  are uniformly distributed on [ [π2;0 and θ  has the
probability density )sin(θ on [ [π;0 . An investigation of necessary number of grains to obtain
approximately isotropic material behavior was performed. Results can be found in [23]

Boundary conditions have to be imposed on the volume element to calculate the stress and
strain fields. In micromechanical models homogeneous traction and displacement boundary
conditions according to )()( 0 xnx

V

rrr
⋅=

∂
σσ  and xxu

V

rrr
⋅=

∂ 0)( ε  are frequently used.

3.1.1 Local fields

Fig. 4 shows the stress field ( )2111 , xxσ  at the micro scale for an alumina polycrystal. The
elastic properties of the trigonal single crystal can be found in [24]. The random grain
structure and the random orientation of the grains leads to a stochastic stress field with

256min
11 =σ MPa and 406max

11 =σ MPa. The highest stress concentration and stress gradients
are observed at the grain boundaries due to the discontinuous material transition. The scatter
of the stress field is a measure for the localization at the microscale. For further modeling of
local plastic deformation or damage initiation at the microscale this variation of the micro
fields is crucial.
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Fig. 5 shows the probability density of the local stress component 11σ  for displacement and
traction boundary conditions. Considerable scatter of the stress for the two selected boundary
conditions can be observed.

a) 1

2

 b)

Fig. 4 Stochastic stress field ( )2111 , xxσ  a) f=0; displacement boundary conditions

001.00
11 =ε . b) f=0.053; 001.00

22 =ε . The representative volume element consists of 80
grains.
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Fig. 5 Probability density of the stress 11σ  for plane stress (PS) and plane strain (PE). a)
for traction and b) for displacement boundary conditions. The representative volume
element consists of 500 grains and 50 realizations for the grain orientations are
considered.

alumina barium titanate
model plane strain plane stress plane strain plane stress

11σ  [MPa] 100 ± 2.9 100 ± 3.2 100 ± 10.4 100 ± 11.9

22σ  [MPa] 0 ± 2.7 0 ± 2.8 0 ± 8.0 0 ± 8.1

12σ  [MPa] 0 ± 1.5 0 ± 1.7 0 ± 4.8 0 ± 5.5

Table 1 Mean value and standard deviation of the local stress fields for traction
boundary conditions 1000

11 =σ MPa. The representative volume element consists of 500
grains and 50 realizations for the grain orientations are considered.

The mean values and the standard deviations of local stresses are shown in Table 1 for
alumina and barium titanate. Plane strain and plane stress is considered. The single crystal
values of barium titanate [24] show a larger deviation from the isotropic case than those of
alumina. Therefore barium titanate shows higher fluctuations in the local stress fields. It can
be seen that the standard deviation of the shear component is considerably smaller than the
other stress components.

Fig. 6a shows the probability density of the local stress 11σ  in a microcracked polycrystal as a
function of microcrack density. The microcrack density f is defined according to [25]. In the
present application f=0.1 represents a rather severe density of microcracks (see also Fig. 4b,
where f=0.053). Due to the presence of microcracks one can observe a significant
redistribution of stress. While the stress singularities at the crack tips clearly lead to higher
maximum stresses, the unloading effect dominates the local field: the mean value of the stress
decreases with increasing microcrack density as shown in Fig. 6b.
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Fig. 6 a) Probability density and b) mean value and standard deviation of the local
stress 11σ  in a microcracked polycrystal with 80 grains. Displacement boundary
conditions are imposed.

These results are very important for the design of components in the micro system technology
(E.g., micro planetary gear) with statistical methods [26].

3.1.2 Effective Properties

Several methods for determination of the effective properties of a heterogeneous
microstructure from the single crystal values exist in literature. The well known Voigt [27]
and Reuss [28] bounds on the effective properties are derived by averaging the stiffness and
compliance tensors of the single crystals, respectively. The Hashin-Shtrikman variational
principle [29] leads to narrower bounds for the effective properties, assuming statistical
independence of grain orientations. The self consistent method [30] considers an ellipsoidal
inclusion in an homogeneous, effective medium. It therefore takes into account a weak
interaction between the micro constituents.

With our model we can consider a more realistic microstructure represented by a Voronoi
tessellation, the local anisotropy of the grains and the interaction of the micro constituents.

The effective elasticity tensor *C  is defined with volume averages of the local stress σ  and

strain field ε :

klijklij C εσ *= . (2)

Note that Eq. (2) is only an implicit definition of *C . For the two-dimensional case we
impose three linear independent boundary conditions to solve this equation in a unique way
[23]. Due to the finite number of grains, a slight anisotropy remains present in *C . This can
either be neglected or eliminated by an averaging procedure over the full range of Eulerian
angles. After calculating *C  the effective Young’s modulus, Poisson ratio and the shear
modulus can be obtained in the ordinary way.

Using eq. (2), the effective material parameters for an Al2O3 polycrystal are calculated. The
scatter of the Young’s modulus is shown in Fig. 7a for Voronoi tessellations with 5 to 1000
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polygons (grains). For each number of grains, 50 different random orientations were
simulated and displacement boundary conditions were imposed (plane strain).

The scatter of the Young’s modulus decreases with increasing number of grains for the RVE.
This behavior is typical, because of the decreasing influence of the orientation of a single
grain for large RVE’s.

Fig. 7 a) Scatter of Young’s modulus for 50 different random orientation simulations
for each RVE from 10 to 1000 grains. b) Mean values of the Young’s modulus for 50
calculations (plane strain). Higher and lower values are calculated with displacement
and traction boundary conditions, respectively.

The mean values of the Young’s modulus obtained with displacement boundary conditions
are higher than those obtained by traction boundary conditions. This can be explained by
artificially increased stiffness of the grains at the boundary. This increased stiffness is caused
by the constraint effects from prescribed displacements at the boundary of the RVE. For an
increasing number of grains those local effects vanish and the mean values of the Young’s
modulus converge to a limit value which may be interpreted as effective Young’s modulus of
the Al2O3 polycrystal.

The self-consistent method with a spherical grain shape predicts a Young’s-modulus of 405.9
GPa. The difference to the calculated values in Figure 5 is due to the fact that in the FE-
Voronoi model a more realistic microstructure, interaction between the grains and local
anisotropy of the grains are fully taken into account.

3.2 Development of Intergranular Stress Corrosion Cracks

This section discusses the basic ideas and accuracy of method proposed to analyze the stress
fields around tips of interacting cracks with complex random shapes. Crack initiation and
propagation is caused by intergranular (stress) corrosion and/or creep crack growth. The
fracture mechanics analysis is described in [31]. The shapes of the cracks and interaction
effects are currently limited only with the underlying random grain structure (e.g., assuming
development of intergranular crack growth). Some possible applications of this method may
be found for example in [8], [9] and [14].
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3.2.1 Comments on meshing

The Voronoi tessellation is used here to model the random grain structure. Further important
assumptions are (1) the grain boundaries are only used as potential paths for the cracks and
(2) the material in all grains is homogenous and isotropically elastic (for details see [8] and
[9]). The failed grain boundaries are therefore modeled as cracks in an isotropic elastic
continuum. This limitation is however not imposed by the method, but with our current
understanding of micromechanical processes involved for example in stress corrosion
cracking of Inconel 600 in hot water (see for example [9] and references therein). Such
assumptions, combined with the use of domain integral methods, lead to reasonably accurate
estimates of stress intensity factors with rather coarse isoparametric meshes (as shown in Fig.
2b, see [31] and references therein).

Fig. 8 Meshed grain structure with intergranular cracks (101 grain, 14 cracks).

Fig. 8 shows a typical Voronoi tessellation (101 grains, red lines) meshed by algorithm
described in Section 2. Bold yellow lines denote the 14 cracks. The shapes of the 14 cracks
were derived from the stochastic processes representing initiation and growth (for details see
[9] and [31]) and should be seen as a shapshot from a simulated development of intergranular
crack pattern [9]).

3.2.2 Selected Results

The model outlined in Fig. 8 was subjected to a remote bi-axial stress field with magnitudes 2
and 1 in directions of 1 and 2 (Fig. 9), respectively. The boundary conditions enforced the
borders of the window to remain straight lines during the straining. The resulting stress field
is depicted in (Fig. 9) in terms of von Mises equivalent stress. The areas with amplifications
and reductions of the stresses due to the presence of cracks are clearly indicated.



voronoi_fe_meshing_rev_2.doc 12:48 10.08.01 15/19

Fig. 10 gives a measure of accuracy of J-integral estimates at the tips of the straight cracks.
The straight cracks are selected for comparison here since analytical solutions are available, at
least without taking account of the interaction effects. The following conventions are used in
Fig. 10 (see [31] for further details):
• J-integral error represents a relative error of the finite element estimate against

appropriate analytical solution, which is assumed to have no error and does not account
for any interaction effects;

• Relative size of typical element is simply the length of the crack divided by the length of
finite element at the crack tip. Increasing the relative size of typical element would lead to
increased numerical errors in J-integral, as shown by bold black lines in Fig. 10.

• STEP 0, 1 and 2 is used to distinguish between different complexities of the crack
patterns. STEP 0 means that only simple straight cracks are present in the tessellation
(e.g., crack initiation stage). STEP 1 and 2 include certain level of crack growth, which
generates more complex patterns. Fig. 8 and Fig. 9 are snapshots from STEP 1.

The accuracy of J-integral estimates given in Fig. 10 and [31] is considered adequate. It
should be noted here again that the zero error line assumes no interaction of cracks. However,
it is clear from Fig. 9 that the straight cracks are small as compared to the other cracks in the
pattern and that they are subjected to rather large interaction effects.

Fig. 9 Von Mises equivalent stress: areas with stress amplifications and reductions in
red and blue, respectively.
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4 CONCLUSIONS

The framework for automatic generation of quadrilateral meshing of Voronoi tessellation is
proposed. Special attention is given to the meshes, which enable explicit modelling of
physical processes on a grain boundary level, like stress- or corrosion-induced intercrystalline
microcracking. Contact and friction effects between several grains can be modeled according
to the capabilities of the available finite element code.
This is shown in the applications presented above, which are oriented towards fracture
mechanics, in particular to the development of intergranular microcracks and/or their impact
on the effective behaviour of the polycrystalline material.

The current algorithms specialise in planar tessellations. This is mainly because the
computational efforts devoted to meshing and subsequent numerical solution of planar models
easily outgrew the available resources. Additionally, the minimum geometric requirements for
a “meshable” tessellation are outlined. As far as feasible, the implementation of features built
in commercially available mesh generators was pursued.

Boundary condition based on homogeneously imposed stresses or displacements lead to upper
and lower bounds in the elastic constants. With increasing number of grains, the bounds tend
to coincide. Selection of a suitable RVE size can be based on admissible differences of upper
and lower bounds.

The performance of the proposed framework is demonstrated with two examples using the
commercially available general-purpose finite element code ABAQUS.

Future efforts will be focussed mainly in two directions. First, develop mesh refinements at
the vertices of grains, aiming at reliable estimation of J-integrals at crack tip of essentially
dissimilar materials (e.g., aggregate of randomly oriented anisotropic grains). An obvious
long-term task is generalisation of the meshing algorithms to 3-D tessellations.
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