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Abstract:  

This paper deals with the correlation length estimated from a mesoscopic model of a 

polycrystalline material. The correlation length can be used in some macroscopic 

material models as a material parameter that describes the internal length. It can be 

estimated directly from the strain and stress fields calculated from a finite-element 

model, which explicitly accounts for the selected mesoscopic features such as the 

random orientation, shape and size of the grains. A crystal plasticity material model was 

applied in the finite-element analysis.  

 

Different correlation lengths were obtained depending on whether the strain or the stress 

field was used. The correlation lengths also changed with the macroscopic load. If the 

load is below the yield strength the correlation lengths are constant, and are of the order 

of the average grain size. The correlation length can therefore be considered as an 

indicator of first plastic deformations in the material. Increasing the load above the yield 

strength creates shear bands that temporarily increase the values of the correlation 

lengths calculated from the strain fields. With a further load increase the correlation 

lengths decrease slightly below the average grain size. If displacement boundary 

conditions are used, the correlation length calculated from strain field is lower then the 

one calculated from the stress field. The opposite is true, if stress boundary conditions 

are applied. However, with the exception of the load region where significant shear 

bands appear, both seem to follow similar qualitative rules. 

 

Keywords: Correlation length; Polycrystalline material; Crystal plasticity;  
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1 INTRODUCTION 

In state-of-the-art structural and stress analyses it is normal to assume that the materials 

under test are homogeneous and isotropic. Such assumptions are valid for the load-

carrying capacities and lifetime analyses of moderately deformed parts that are 

significantly larger than the inhomogeneities, such as grains, voids or inclusions, which 

constitute the material. The grains in metals, for example, are typically of the order of 

10-5 m. Material inhomogeneities may, however, become important when analyzing the 

following: small parts with sizes similar to the inhomogeneities [1-4], parts subject to a 

load approaching their strength limit [2,5-7] and the initiation and propagation of short 

cracks [8-12]. In such cases the localized stress and strain peaks caused by the 

inhomogeneities usually dominate the response of the material and this may severely 

limit the applicability of state-of-the-art engineering structural and stress analyses.  

 

A number of attempts to include the inhomogeneities in the models used to describe 

materials can be found in the literature. In this paper we have defined two, somewhat 

arbitrary, classes of models: 

(1) Advanced macroscopic material models. This group includes, among others, 

gradient theories [13-15], continuum damage models [16,17] and stochastic 

finite-element approaches. A common feature of these models is that a more or 

less explicit model of the inhomogeneities is employed to predict the behavior at 

the macroscopic (engineering) level. This again tends to require assumptions 

that lead to the need for additional material parameters, which may require a 

number of expensive additional tests. Typically, the internal length representing 

the size of the inhomogeneities is one of the most important material parameters. 
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(2) Multi-scale models. These explicitly model at least the mesoscopic 

inhomogeneities (e.g., grain structure, for a review see [18]), while very general 

and relatively free of assumptions about homogeneities is computationally very 

demanding and not yet suitable for engineering analyses. 

 

The most efficient way to improve engineering analyses is, therefore, a combination of 

both these approaches. A very promising way seems to be to employ a multiscale 

approach in the first step, in order to derive mesoscopic (i.e. on the scale of the grains in 

the material) stress and strain fields. A statistical analysis of such fields is then used in 

the second step to derive the correlation lengths. These in turn may be used as a direct 

input for a stochastic finite-element analysis, which represents the third step. A number 

of authors have dealt with the third step: see, for example, [19-23]. To the best of our 

knowledge, however, the first two steps have not yet been treated. 

 

The main goal of this paper is, therefore, an estimation of the correlation lengths within 

the stress and strain fields of a mesoscopic model of a non-homogenous and anisotropic 

steel structure. The first part of the paper briefly explains the basic ideas of the 

mesoscopic model and the procedure employed to derive the correlation lengths. This is 

followed by a numerical example, which outlines and discusses the most important 

results – the changes in the correlation lengths with the increase of the remote load, the 

distribution of the correlation lengths, and the effect of the boundary – and the 

conclusions. 

 4



2 MODEL DESCRIPTION 

The estimation of the correlation lengths is based on a mesoscopic material model [18] 

that includes grains of random size, shape and orientation. The finite-element method 

[24] is employed to determine the strain and stress fields resulting from a remote load. 

These two fields are then used for the estimation of the correlation lengths. Strain and 

stress fields were chosen for this analysis for two main reasons: (1) they can be treated 

as primary variables and (2) they offer a reasonably good framework for the 

interpretation of the results. For derived quantities, e.g. Young's modulus [25], the 

calculation of the correlation lengths is relatively straightforward, however, we did not 

investigate this here. 

 

2.1 Boundary conditions 

Displacement and stress type boundary conditions were investigated, Figure 1. These 

two boundary conditions are used because they produce the upper and lower limit of the 

macroscopic equivalent stress at a certain macroscopic equivalent strain. For 

displacement boundary conditions tensile remote loads with zero shear tractions are 

applied on the right and top edge. The right edge is only allowed to move parallel to the 

left edge. Similarly, the top edge is only allowed to move parallel to the bottom edge. 

Stress boundary conditions are similar to the displacement boundary conditions with the 

exception that the right and top edge are not required to move parallel to the left and 

bottom edges. 
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2.2 Voronoi tessellation 

The main idea of the mesoscopic model [18] is to divide the continuum into a set of 

randomly sized, shaped and oriented subcontinua, i.e. grains. Grains are generated with 

the Voronoi tessellation [26]. A Voronoi tessellation represents a cell structure 

constructed from Poisson points by introducing planar cell walls perpendicular to the 

lines connecting neighboring Poisson points. This results in a set of convex polygons 

embedding the Poisson points. The polygons completely fill up the underlying space, 

and each grain is assumed to behave as a continuum. The number of Poisson points is 

selected in such a way that the obtained average grain size is as close as possible to the 

average grain size of the used material (0.023 mm). A number of tessellations were 

generated and a case most suitable for finite element meshing was selected. The details 

on the Voronoi tessellations are given in Table 1. Two different Voronoi tessellations 

used in this investigation are presented in Figure 1. 

 

2.3 Material model 

The material orientations, which are defined by the orientations of the crystal lattices, 

are kept constant within a single grain; however, they vary according to a uniform 

distribution between the grains. Each grain is further subdivided into 8−node, quadratic, 

reduced-integration and plane strain finite elements. The material orientations are 

shown with local coordinate systems. Anisotropic elasticity and crystal plasticity 

[18,27,28] material models were applied. The crystal plasticity model assumes that 

plastic deformation takes place via a simple shear on a specified set of slip planes. The 
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slip planes are defined by the random material orientations, which differ among the 

grains. 

2.3.1 Elasticity 

The constitutive relations in linear elasticity are given by the generalized Hooke’s law 

 klijklij C εσ ⋅=  ,        (1) 

where σij represents the second-rank stress tensor, Cijkl  the fourth-rank stiffness tensor 

and εij the second-rank strain tensor. The material parameters for the 22 NiMoCr 3 7 

steel were obtained from the literature for an α-Fe body-centered cubic crystal [29].  

2.3.2 Crystal Plasticity 

The plastic deformation in monocrystals is assumed to take place via a simple shear on 

a specific set of planes. The combination of a slip plane, denoted by its normal mi
(α), and 

a shearing direction, si
(α), is called a slip system, (α). The plastic deformation rate, , 

due to a crystallographic slip can be written as [30] 

p
jiu ,

 ,        (2) ( ) ( ) ( )∑=
α

αααγ
ji

msu p
ji,

where the summation is performed over all active slip systems, (α), while γ (α) 

represents the shear rate. From the well-known relation for strain, εij =0.5(ui,j + uj,i), one 

can obtain the rate of plastic deformation:  

 ( ) ( ) ( ) ( ) ( )(∑ +=
α

αααααγε
ijji

msmsp
ij 2

1 )

)

.      (3) 

The constitutive relation of the elastic–plastic monocrystal is now given in terms of 

stress and strain rates as: 

 .        (4) ( p
klklijklij C εεσ −⋅=
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It is assumed that the shear rate γ (α) depends on the stress only via the Schmid resolved 

shear stress. This is a reasonable approximation at room temperature and for ordinary 

strain rates and pressures [30]. The Schmid resolved shear stress for a given slip system 

is given by eq. (5), while its relationship with the slip rate is given by eq. (6). Yielding 

is then assumed to take place when the Schmid resolved shear stress exceeds the critical 

shear stress  

 ,        (5) ( ) ( ) ( )ααα στ
ji

ms ij=

 ( ) ( )
( )

( )

( )

( )

1−

















=

n

gg
a α

α

α

α
αα ττγ .       (6) 

In eq. (6) a (α) represents the reference strain rate, n the strain-rate-sensitivity parameter 

and g(α)
 the current strain-hardened state of the crystal. In the limit, as n approaches 

infinity, this power law approaches that of a rate-independent material. The current 

strain-hardened state g(α) can be derived from: 

 ,        (7) ( ) ( )β

β
αβ

α γ∑= hg

where hαβ are the slip-hardening moduli. The self-hardening moduli hαα are defined 

with eq. (8) [31]: 

 ( )
0

02
0 sech

ττ
γγαα −

==
S

h
hhh ,      (8) 

where h0 is the initial hardening modulus, τ0 the yield stress (equal to the initial value of 

the current strength g(α)(0)), τS  the break-through stress where large plastic flow 

initiates and γ the cumulative slip defined as: 

 ( ) dt
t

∑∫=
α

αγγ
0

,        (9) 
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 ( )γαβ hqh = , ( )βα ≠ .       (10) 

The latent-hardening moduli hαβ are given by eq. (10), where q is a hardening factor. 

The material parameters for plasticity are: n = 50, å (α) = 0.001, h0 = 70 MPa, τS = 15.5 

MPa, τ0 = 155 MPa, q = 1.0. A detailed explanation of the parameters can be found in 

[16]. 

3 CORRELATION LENGTH 

The computational effort needed for the calculation of the stress and strain fields using 

the crystal-plasticity material model is large, and so this limits the size of the models to 

approximately 0.40 mm by 0.28 mm. The computational effort could be reduced if just 

the essential inhomogeneities were taken into the account, and then this information 

used in a macroscopic model. One way of estimating the essential inhomogeneities is to 

calculate the domain of influence of the grains. In this study the correlation length is 

taken as a measure of the domain of influence of the individual grains. 

 

The autocorrelation function Rxx(l1,l2) of a random process x(l) is defined by eq. (11), 

where E[] represents the mathematical expectation and  the joint probability-

density function. The covariance function K

( ) ( )21 lxlxf

xx(l1,l2) of a random process x(l) is defined 

by eq. (12), and can be expressed using the autocorrelation function, eq. (13). 

( ) ( ) ( )[ ] ( ) ( )( )∫ ∫ ⋅⋅⋅⋅=⋅= 2121212121 ,,
21

dxdxxxfxxlxlxEllR lxlxxx ,  (11) 

( ) [ ]( ) [ ]([ ])()()()(, 221121 lxElxlxElxEllKxx −⋅−= )

]

,   (12) 

( ) ( ) ( )[ ] ( )[ 212121 ,, lxElxEllRllK xxxx ⋅−= .     (13) 
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For stationary random processes the joint probability-density function )  depends 

only upon the difference l

( ) ( 21 lxlxf

2-l1. Consequently, the autocorrelation and covariance 

functions also depend only on the difference l2-l1. If, in addition to the stationarity, the 

average value of the random process is zero, then the autocorrelation and covariance 

functions of the process involved are equal: see expressions (14) and (15). 

( ) ( ) ( ) ( ) 12121221 ,,0, llllRllRllRllR xxxxxxxx −==−=−= ,  (14) 

( ) ( ) ( ) ( )[ ] ( )[ ] ( )lRllxExElRllKlK xxxxxxxx =−⋅−=−=
== 0

12

0

12 0 .   (15) 

For covariance functions of the form given by the equation (16), the correlation length λ 

can be defined as the value of the parameter l for which the envelope of the covariance 

function falls to the value Kxx(0)/e, Figure 2.  

( ) ( ) ( leKlK l
xxxx ⋅⋅⋅= − ωλ cos0 / ).      (16) 

Now, let us assume that we have a vector of data g for which we want to determine the 

correlation length. First, the autocorrelation function is estimated using the discrete 

correlation theorem, eq. (17). In eq. (17) the symbol Gk represents the discrete Fourier 

transformation of the vector g, while the symbol * stands for the complex conjugation. 

We calculate the discrete Fourier transform of the vector g to obtain Gk. Next, we 

multiply, index by index, the vector Gk by Gk
*. Finally, we calculate the inverse Fourier 

transform of the product GkGk
* to determine the autocorrelation function. The 

correlation length is calculated from the envelope of this autocorrelation function. The 

instantaneous envelope of a function f(t) is defined with eq. (18), where H(t) represents 

the Hilbert transform, eq. (19), of a function f(t). 

( ) 1)(,2,1,0,,Autocorr * −=⇔ GlengthkGG kkj …gg ,   (17) 

 ( ) ( ) ( )22 )()( tHtftA += ,       (18) 
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 ( ) ( ) ( )∫
∞+

∞−
⋅⋅

−⋅
= ττ

τπ
df

t
tH 1 .      (19) 

The correlation length is calculated from the equivalent strain, eq. (20), and equivalent 

(Mises) stress, eq. (21). εeq and σeq are determined for every Gaussian integration point 

of the finite elements. For the correlation-length calculation the strains and stresses are 

assumed to be random variables. 

( ) ( ) ( ) ( )[ ] 2/1222222 6
3
2

zxyzxyxzzyyxeq εεεεεεεεεε +++−+−+−= ,  (20) 

( ) ( ) ( )[ ]222222 666
2
1

zxyzxyxzzyyxeq τττσσσσσσσ +++−+−+−= .  (21) 

Since strain and stress are two-dimensional variables, a vector of data for the 

correlation-length calculation has to be extracted. This can be done in the following way 

(see Figure 3): i) a point for which the correlation length is to be calculated is selected, 

ii) a direction α for calculating the correlation length is chosen, iii) the length of the 

vector is determined by the search radius R, iv) a quadratic two-dimensional 

interpolation [32] is applied to obtain the values of the strains and stresses in the equally 

spaced points on the direction line within the search radius (the bold line in Figure 3), v) 

the correlation length is calculated for the selected direction, vi) the procedure is applied 

for other directions. The final correlation length is determined as the average value of 

the correlation lengths for the selected directions. In this study we used six predefined 

directions: from 0o up to 150o in steps of 30o. The procedure was repeated for every 

Gaussian point. 
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The stresses and strains were calculated using the ABAQUS [24] finite-element code. 

The macroscopic equivalent stress <σeq> and the macroscopic equivalent strain <εeq> 

were calculated as: 

 ∫=
V eqeq dV

V
σσ 1 , ∫=

V eqeq dV
V

εε 1 ,     (22) 

where σeq stands for the equivalent stress, eq. (21); εeq for the equivalent strain, eq. (20); 

and V for the volume of a polycrystalline aggregate. 

4 RESULTS AND DISCUSSION 

The correlation length is estimated from the strain and stress fields of a finite-element 

model using 212 crystal grains with a size of 0.4 mm by 0.28 mm. For each Voronoi 

tessellation models with displacement and stress boundary conditions are analyzed. 

These models are labeled as d_1, d_2, s_1 and s_2. The letters ‘d’ and ‘s’ refer to the 

displacement and stress boundary conditions. The numbers 1 and 2 refer to the 1st and 

2nd Voronoi tessellation. When discussing results obtained from the strain or stress 

fields subscripts ‘e’ (for ε) and ‘s’ (for σ) are added. All models are loaded with 

p1=1400 MPa and p2=p1/2=700 MPa. 

 

In a previous investigation [33] we determined that the correlation length depends upon 

the size of a search radius R. Larger search radius would result in higher correlation 

lengths. At large search radiuses a saturation point is expected where the correlation 

length would stop increasing and stabilize. However, the computational power for 

solving such large models is at this time beyond our reach. We determined that the 

search radius should be larger than the average grain size. In this study we used a search 

radius R corresponding to twice the average grain size (0.046 mm).  
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If a small search radius R is chosen, it is possible that the vector g will contain 

insufficient information about the strain and stress fields for a meaningful estimation of 

the correlation length. On the other hand, when a large search radius R is chosen, the 

vector g contains strain and stress information from a larger ‘area’, which may not be a 

representative measure of the local statistics. In addition, when a large search radius R is 

used, a part of the vector g is much more prone to falling outside of the area of the 

model. For the points of the vector g outside of the model area the strains and stresses 

are assumed to be zero.  

4.1 The influence of the Voronoi tessellation 

The Voronoi tessellation defines the shape and size of grains. Its influence on calculated 

correlation lengths can be seen when comparing Figure 5 with Figure 6 (displacement 

boundary conditions). One can see that shapes of the correlation length curves are 

similar. As long as the specimen is stressed below the yield point the correlation length 

does not change. This is in accordance with the statistical theory since the proportional 

change in the observed strain and/or stress field (e.g. by a factor 1.1) does not change 

the correlation length. The difference between the correlation lengths calculated from 

the strain and stress fields is, however, higher for the 1st Voronoi tessellation (0.0014 

versus 0.0005 if stressed below the yield point). 

 

Similar observation can be made when comparing the influence of the Voronoi 

tessellation on the cases with stress boundary conditions, see Figure 7 and Figure 8. The 

shapes of the correlation length curves are very similar, however, the difference 
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between the correlation lengths calculated from the strain and stress fields is in this case 

higher for the 2nd Voronoi tessellation ( 0.0003 versus 0.0016 if stressed below the yield 

point). 

 

From the presented cases it can be concluded that the Voronoi tessellation affects the 

level of the correlation length but has little effect on the shape of its curve. 

 

4.2 The influence of boundary conditions 

Boundary conditions affect calculated strain and stress fields and therefore also have an 

impact on the correlation length. For the same macroscopic equivalent strain a model 

with displacement boundary conditions will have larger macroscopic equivalent stress 

than a model with stress boundary conditions. If one wants to assess the effect of 

boundary conditions on the correlation length, cases with the same Voronoi tessellation 

have to be compared. 

 

The difference between Figure 5 and Figure 7 is in the boundary condition. For both 

cases the Voronoi tessellation (1st), material orientations and loads are the same. One 

can observe that the shapes of the correlation length curves between the two cases are 

very similar. The largest difference between the two cases is 7.2% for the correlation 

length calculated from the strain fields and 7.8% for the correlation length calculated 

from the stress fields. However, for displacement boundary condition the correlation 

length calculated from the stress field is higher when the specimen is stresses below the 

yield point. This is not the case with stress boundary conditions. Here the correlation 
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length calculated from the strain field is higher. Similar conclusions can be made for the 

2nd Voronoi tessellation, compare Figure 6 and Figure 8. 

 

Boundary conditions also affect the general level of the correlation lengths calculated 

from the strain and stress fields. As long as the specimen is stressed below the yield 

point this difference is larger for displacement boundary condition than for the stress 

boundary condition (1st Voronoi tessellation). For the 2nd Voronoi tessellation situation 

is opposite. 

 

From the presented cases it can be concluded that the two boundary conditions have a 

similar impact as the Voronoi tessellation. Boundary conditions affect the level of the 

correlation length but have little effect on the shape of its curve. 

 

4.3 General discussion 

The selection of strain or stress as a basis for the calculation of the correlation length 

strongly influences the shape of the correlation length curve. This can be seen in all 

analyzed cases. If displacement boundary conditions are used, the correlation length 

calculated from strain field is lower then the one calculated from the stress field (as long 

as the specimen is stressed below the yield point). Opposite is true if stress boundary 

conditions are applied. The behavior of the correlation length can, however, be 

classified into three regions. The first region is when the specimen is stressed below the 

yield point. There is a difference in correlation lengths calculated from the strain and 

stress fields, however, this difference and the correlation length in this regions remain 
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constant. Using this property one can estimate how high must the macroscopic 

equivalent stress be for first plastic deformations to occur. For the material involved this 

is estimated at 245 MPa.  

 

The second region begins when the load is increased and the specimens are stressed 

above the macroscopic yield point. The correlation length starts to decrease. The rate of 

decrease is different if correlation length is calculated from strain or stress field. In the 

case of the correlation length calculated from the stress field it can even slightly 

increase. At this loads first shear bands start to form. It was observed that in some cases 

(correlation length calculated from the strain field) the areas of higher correlation 

lengths coincide with the shear bands, see Figure 9 and Figure 10. The grain boundaries 

are plotted with black (Figure 9) and white lines (Figure 10). A further increase in the 

load caused widening and elongation of the shear bands. In this region the correlation 

lengths increased in all analyzed cases. 

 

The last region begins at macroscopic equivalent stress of ≈570 MPa. At this load the 

correlation length calculated from the strain field starts to decrease. The correlation 

length calculated from the stress field is still slightly increasing (displacement boundary 

conditions) or stabilizes (stress boundary conditions) at approximately 0.025 (1st 

Voronoi tessellation) and 0.022 mm (2nd Voronoi tessellation).  

5 CONCLUSIONS 

In this study the correlation length for a mesoscopic model of a polycrystalline material 

has been calculated. By using the correlation length we were able to determine the 
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length scale of the inhomogeneities. This is an important material property in advanced 

macroscopic material models. 

 

The calculated strain and stress fields were used to estimate the correlation lengths. The 

influence of the random grain geometry (Voronoi tessellations) and boundary conditions 

on the correlation length was estimated. We determined that the Voronoi tessellations 

and the boundary conditions affect the general level of the correlation length but have 

little impact on the shape of the correlation length curve. When using displacement 

boundary conditions, the average correlation lengths calculated from the stress field are, 

in general, higher than the ones calculated from the strain field. The opposite is true for 

the stress boundary conditions. 

 

The correlation lengths also depend on the macroscopic load. For elastically deformed 

polycrystal, the grain’s domain of influence is slightly larger than the average grain size. 

Increasing the macroscopic equivalent stresses between 270 MPa and 500 MPa causes 

some fluctuations of the domain of influence. With further increase of the macroscopic 

load, the correlation length calculated from the stress fields reaches its peak value and 

then decreases continuously. 

 

The calculated correlation lengths were averaged over different directions. This 

effectively reduced their potential for detecting direction-dependant structures in an 

anisotropic material.  This drawback may be effectively overcome by calculating a two-

dimensional autocorrelation function. This represents an important goal for the future 

work. 
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Tables 

Table 1 

 

1st Voronoi tessellation 

 Edge length [mm] Edge number [/] Grain area [mm2] 

Average value 0.0923 4.76 0.000528 

Standard deviation 0.0249 1.24 0.000297 

  

 

  

2nd Voronoi tessellation 

 Edge length [mm] Edge number [/] Grain area [mm2] 

Average value 0.0919 4.75 0.000528 

Standard deviation 0.0219 1.22 0.000268 
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Figure 9: Equivalent strain εeq; <εeq>= 0.035, <σeq>= 492.12 MPa . Displacement 

boundary conditions, 1st Voronoi tessellation 

Figure 10: Correlation length at <εeq>= 0.035, <σeq>= 492.12 MPa . Displacement 

boundary conditions, 1st Voronoi tessellation  
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