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ABSTRACT 
The basis for determining the size of the random sample of tubes to be inspected in 
replacement steam generators is revisited in this paper. A procedure to estimate the 
maximum number of defective tubes left in the steam generator after no defective tubes have 
been detected in the randomly selected inspection sample is proposed. A Bayesian estimation 
is used to obtain closed-form solutions for uniform, triangular and binomial prior densities 
describing the number of failed tubes in steam generators.  
 
It is shown that the particular way of selecting the random inspection sample (e.g., one 
sample from both SG, one sample from each SG, etc.) does not affect the results of the 
inspection and also the information obtained about the state of the uninspected tubing, as 
long as the inspected steam generators belong to the same population. Numerical examples 
further demonstrate two possible states of the knowledge existing before the inspection of the 
tubing. First, virtually no knowledge about the state of the steam generator tubing before the 
inspection is modeled using uniform and triangular prior densities. It is shown that the 
knowledge about the uninspected part of the tubing strongly depends on the size of the 
sample inspected. Further, even small inspection samples may significantly improve our 
knowledge about the uninspected part. On the other hand, rather strong belief on the state of 
the tubing prior to the inspection is modeled using binomial prior density. In this case, the 
knowledge about the uninspected part of the tubing is virtually independent on the size of the 
sample. Furthermore, it is shown qualitatively and quantitatively that such inspection brings 
no additional knowledge on the uninspected part of the tubing. 
 

1 INTRODUCTION 
In Pressurized Water Reactors, a program of periodic in-service inspection of steam 
generator tubes is set up to monitor the integrity of the tubes. The in-service inspection is 
performed using non-destructive examination techniques, e.g., eddy current testing. 
Especially in replaced steam generators, not all the tubes are inspected but the inspection is 
limited to a sample of tubes. Therefore the objective of the in-service inspection is to provide 
reasonable insurance of steam generator tubing integrity. Consequently, the concern is the 
level of confidence that can be placed in the estimated knowledge about the whole population 
of the steam generator tubes from the information obtained from the examination of a sample 
of a limited size. 
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The usual procedure [1] serving as a basis for determining the percentage of tubes sampled is 
to provide, by means of a statistical analysis, an equation that relates the percentage of tubes 
sampled, the number of degraded tubes present in the total population, and the probability 
(confidence level) that at least one defective tube will be sampled during the examination.  
For instance, this equation allows determining the number of defective tubes required to 
provide a 90 percent level of confidence that at least one defective tube will be sampled for a 
given percentage of tubes sampled. 
 
In replacement steam generators, the number of defective tubes is expected to be very low. 
Indeed, the use of tube material showing less sensitivity to stress corrosion cracking as well 
as improvements in design and fabrication make the occurrence of degradation mechanism 
less likely. The usual sample may then simply be too small to include a defective tube. 
Hence, the basis for determining the percentage of tubes sampled is revisited in this paper 
and is aiming at the estimation of the number of defective tubes in the total population given 
that no defective tubes have been detected in an inspection sample. Otherwise stated, we are 
estimating the  failure probability from data that contain zero defects. To this end a Bayesian 
estimation procedure is used.  
 
Numerical solution of resulting Bayesian equation has been reported in [2]. In this paper, the 
relation between the estimated number of defective tubes at a given confidence level and the 
size of the sample given that no degraded tubes have been detected in the sample is derived 
in a closed-form for a selected set of prior distributions. A realistic numerical example is 
provided to arrive at interesting quantitative conclusions. 
 
The failure probability of defective tubes steam generators is not discussed in this paper. 
Rather extensive literature exists on this matter – see for example [3], [4], [5] and references 
therein. 

2 MATHEMATICAL 
It is our intention to arrive at closed-form expressions relating the fact that the inspection of a 
small sample selected randomly from the population showed exactly zero defects, with the 
probability of having certain number of defective tubes in the finite population.  
 
To this end, some closed-form solutions are derived using the Bayesian probability theory. 
Also, some approximations found in the literature are discussed. 

2.1 Basic relations 
Consider a lot of N units of the same type. It is expected that there are a few defective units 
in the lot. Before inspection, however, there is no known reason to distinguish among 
different units as far as their individual plausibility to be defective is concerned. 
 
Random sampling of n units from the lot may be considered as a random drawing without 
replacement of n units from the lot. Put Sn the number of defective units in a random sample 
of size n. The case where n=N means that the sampling without replacement has been 
performed until all units have been drawn and hence SN  is the number of defective units 
contained in the lot. 
 
In the case where the lot is known to include k defective tubes, the probability of l defective 
units among any random sample of size n follows the hypergeometric distribution and is 
given by 
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In the case where the composition of the population is unknown, the probability of l defective 
tubes among any random sample of size n is given by the mixture of hypergeometric 
probabilities by application of the rule of total probabilities 
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Applying Bayes’ theorem, 

∑
+−

=
=′

=
=

=

===
===

lnN

lk
kNSPNknlh

kNSPNknlh
lnSP

kNSPkNSlnSP
lnSkNSP

'
)'(),,,(

)(),,,(
)(

)()(
)( . 

( 3)

Our study, based on Eq.( 3), will be developed in the frame of a subjectivist interpretation of 
probability, namely the Bayesian approach of probability. A characteristic of subjective 
probability is that any unknown quantity is treated as a random variable and uncertainty 
about it is expressed by means of a probability distribution. In the Bayesian probability 
theory, the probability of an event describes the observer’s degree of belief on the occurrence 
of the event, related with a personal state of information.  
 
The Bayes’ theorem, written in terms of discrete probability function models, takes the form:   
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In the Bayesian approach, the prior belief about the probability of k is quantified by a 
probability distribution, the prior distribution of k, i.e., P(k). Data l are then collected, and 
the likelihood function )( klh  is constructed. Finally the posterior distribution )( lkP  is 
constructed, by combining the prior distribution P(k) and the likelihood function )( klh  
through Bayes’ theorem. The posterior distribution shows the updated belief about the values 
of the probability that accounts for the observed data. The integral in the denominator 
ensures that the right hand side of the equation is properly scaled. In any case, it is just a 
constant that is independent of the values of the parameter k.  
 
When the parameter k is discrete, the simplest way is to choose, as a prior distribution, a 
function that combines neatly with the likelihood to give a posterior that can be evaluated by 
relatively simple formulas. However, often there is no closed-form expression for the integral 
in the denominator and the posterior density function must be calculated numerically. 

2.2 Posterior Probabilities of Defective Tubes 
While performing the inservice inspection of the steam generator tubes, the question may 
arise whether if it is sufficient to inspect a random sample from any steam generator or the 
inspection samples should be taken separately from each steam generator. The answer to this 
question is attempted below, addressing three particular cases: 

• One sample from all steam generators 
• One sample from one steam generator 
• Two samples from two steam generators 



For the sake of simplicity, a two-loop plant has been considered. The conclusions may be 
nevertheless extended to an n-loop plant. 
 
Some additional assumptions have also been made: 

1. all steam generators are performing in a like manner; 
2. only one flaw may affect a steam generator tube; 
3. the samples are selected on a random basis; 
4. the probability of detection of flaws with size larger than the detection threshold is 1. 
 

2.2.1 One sample from all steam generators 
Consider first the simplest case where one sample is selected randomly from both steam 
generators. It is convenient to choose the sample size of 2n to be taken from the total 
population of 2N tubes.   
 
Let be the number of defective tubes in a random sample of size 2n taken from both 
steam generators.  Hence,  is the number of defective tubes in the total population. 
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Applying Eq. ( 3), the probability of having l defective tubes in the total population is given 
by 
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In the case where the sample contains no defective tube, i.e. l=0, we have 
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Straigthforward algebraic manipulation using Eq.( 1) yields: 
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2.2.2 One sample from one steam generator 
Let be the number of defective tubes in a random sample of size 2n taken from steam 
generator nr 1 containing N tubes. Hence,  is the number of defective tubes in steam 
generator nr 1.  

'
2nS

'
NS

 
In the case where the population of 2N tubes is known to contain k defective tubes, the 
probability of having i defective tubes in steam generator nr 1 is given: 
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If the population of N tubes in steam generator nr 1 is known to contain i defective tubes, the 
probability of having l defective tubes in a random sample of size 2n taken from steam 
generator nr 1 is given by 
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Applying Bayes’ theorem, the probability of k tubes in the total population of 2N tubes given 
that a random sample of size 2n taken from steam generator nr 1 contains l defective tubes is 
given by 
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Applying the rule of total probabilities we have successively 
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or  
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In the case where the sample contains no defective tube, i.e. =0, we have l
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Again, a straightforward although somewhat tedious algebraic manipulation yields: 
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This demonstrates the equality of Eq. ( 6) and Eq.( 15). 

2.2.3 Two samples from two steam generators 
Let and  be the number of defective tubes in two random samples, each of of size n, 
taken from steam generator nr 1 and steam generator nr 2 respectively.  Each steam generator 
contains N tubes.  Hence, and  are the number of defective tubes in steam generator nr 
1 and steam generator nr 2 respectively.  
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In the case where the total population is known to include k defective tubes and the 
distribution of those defective tubes between steam generator nr 1 (i defective tubes) and 
steam generator nr 2 (k-i defective tubes) is also known, we have 
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In the case where the distribution of the defective tubes between steam generators is 
unknown, application of the rule of total probabilities leads to 
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Applying Bayes’ theorem, the probability of k tubes in the total population of 2N tubes given 
that random samples of size n taken from steam generator nr 1 and nr 2 contain l and m 
defective tubes respectively is given by 
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Applying again the rule of total probabilities, we have 
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Hence 
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In the case where both sample contain no defective tube, i.e., =0 and m=0, we have l
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Again, a straightforward although somewhat tedious algebraic manipulation yields: 
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The equality of Eq. ( 6), Eq.( 15) and Eq.( 24) is therefore demonstrated. This leads to an 
expected conclusion: all the information obtained by the inspection of a random sample 
depends only on the size of the sample. It is therefore not important whether the random 
sample is taken from the total population or from a random partition of the total population. 
In the case of the steam generators, it is therefore not important whether the fixed size 
random sample is taken from one or both steam generators. 
 
A useful practical consequence is that the numerical example in this paper could be fully 
described with minimized numerical effort by using equations developed in section 2.2.1. On 
the other hand, real life inspection of samples from both steam generators may be 
recommended. Such approach might, for example, reveal potential violations of our 
assumption that all steam generators perform in the same manner.  

2.2.4 Prior Distributions 
The choice of the prior distribution of defective tubes )( 2 kSP N =  is, as mentioned above, 
subjective. In the following, a few examples of prior distributions are discussed. They share a 
very useful feature: a closed-form posterior density.  
 
In absence of any information it may be useful to consider a non-informative uniform prior 
distribution:  
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Another practical choice of the prior distribution may be based on the reasonable expectation 
that small number of defective tubes is more likely than a large number. Assuming linear 
decrease of  with increasing k then leads to: )( 2 kSP N =
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We may also assume that the number of defective tubes in the finite population follows the 
binomial distribution: 
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with expected number of defective tubes in the finite population being p2N. 

2.3 Closed-Form Posterior Distributions 
The above priors applied in Eq. ( 6) lead to the closed-form posterior densities listed below. 
Additionally, closed-form solutions for expected number of defects left in the steam 
generator after a sampling inspection with zero defects and its variance are given. They are 
obtained using: 
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2.3.1 Non-informative uniform prior 
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2.3.2 Slightly informative triangular prior 
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2.3.3 Binomial prior 
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2.3.4 Posterior (cumulative) distributions 
 
The posterior (cumulative) distributions are given by the following equations 
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2.4 Comments on the selection of the prior 
If we believe that the material and design improvements made in the replacement steam 
generators are so efficient that active degradation processes are unlikely and at the same time 
acknowledge that rare events might occur, a binomial distribution associated with a low 
value of the probability p appears a well-suited distribution that describes correctly our prior 
information about the condition of the tubes. 



 
On the other hand, we may acknowledge the material and design improvements made in the 
replacement steam generators and at the same time remain convinced that the nature is more 
imaginative than the most experienced engineers. Than, our belief may well be that that no 
knowledge about the condition of the tubes exists prior to the inspection. In such situation, 
the uniform distribution may appear to be a well-suited distribution. 
 
At the first glance, it might appear that the binomial distribution expresses more information 
about the actual proportion of defective tubes in the steam generators than the uniform 
distribution. However, the analysis of the resulting closed-form posteriors (see section 2.3) 
leads to different conclusion. 
 
Some rearrangements of the posterior distribution with the binomial prior (Eq. ( 32)) lead to: 

knNk
nN pp

k
nN

SkSP −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=== 22

22 )1(
22

)0( . ( 35)

Now compare this result with binomial distribution (Eq. ( 28)). It is clear that the posterior in 
Eq. ( 35) is actually the prior we would have postulated for any subset of 2N-2n tubes in the 
population, without any data at all. Otherwise stated, the data collected during the inservice 
inspection of the first sample (2n) tells us nothing at all about the unsampled tubes (2N-2n).  
 
In other words, the binomial prior introduces a strong belief that there is a limited and rather 
well characterized subpopulation of defective tubes. Since we do not find any defective tubes 
during the inspection of the sample 2n, the entire defective subpopulation must have survived 
the inspection and remains in the uninspected set of the tubes. This indeed does not bring any 
new information about the uninspected tubes.  
 
When postulating the uniform prior, the expected number <k> of defective tubes in the 
population after that the inspection of the random sample of 2n reveals zero defective tubes is 
given by Eq.(30).  Then, the expected number of defective tubes left in the population is 
given by  
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This leads to the conclusion that, when using a uniform prior, the data collected during the 
inservice inspection of a sample provide significant new information about the unsampled 
tubes. Indeed, for small samples, even a small increase in the sample size n yields strong 
decrease in the expected number of defective tubes left undiscovered.   
 
Such development corresponds well with our intuitive common-sense judgments: sampling 
inspection will only improve our knowledge about the defective subpopulation if we had 
very poor or no knowledge about it prior to the inspection. 

2.5 Approximate Solutions 
In the following, some approximate solutions obtained from the literature are outlined. They 
are primarily intended for comparison with closed-form solutions derived in this paper. 
 
If N is large enough and the sample size is small (say, n ≤ 0.05N), the binomial distribution 
can be used to approximate the hypergeometric distribution (Eq. ( 1)): 
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where the probability of success p per Bernouilli trial is
N
kp = . 

This approximation is powerful as it allows the use of prior-likelihood combinations called 
conjugate pairs, as discussed in [6] and in Section 2.1.  
 
For example, the Beta distribution model is a conjugate prior for the proportion of successes 
p when samples have a binomial distribution. In other words, the Beta family is conjugate to 
binomial data, that is, updating a Beta prior distribution with data produces a posterior that is 
also a Beta distribution. 
 
If the parameter k/N is assumed to be random and follows the Beta distribution with 
parameters a and b, the prior distribution of g(k/N) is 
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By Bayes’theorem the posterior density of p, given the data Sn=l, is given by  
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The Bayes estimate of p is given by the mean <p>of the posterior distribution, i.e.,  
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If there is no defective tubes in the sample, i.e., l=0,  
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and the estimate <p> for zero occurrence is 
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The selection of the beta distribution for the prior is interesting as the parameters a and b can 
be suitably selected to reflect prior opinion. 
 
With a=1, b=1, the prior is flat and the estimate <p> for zero occurrence reduces to 

2
1
+
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n

p . ( 43)

Now, the Bayes estimate of the number of defective tubes, i.e., <k> is 

2+
=>>=<<

n
NNpk  ( 44)

If 5 percent of the 10,000 steam generators tubes are inspected and no defective tubes are 
found in the sample, the Bayes estimate of the number of defective tubes is  
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+
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This result is close to the expected mean value of defective tubes (Eq. ( 29)) i.e., 19 tubes. 
 



Another non-informative prior is the Jeffrey’s prior and is given by the Beta distribution with 
a=0.5 and b=0.5. This prior corresponds roughly to the belief that either very few or almost 
all the tubes are defective.  For this prior, the estimate of the number of defective tubes is 
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We can also consider an informative prior.  To this end we need to choose values of a and b. 
Suppose we have the belief that the expected number of defective tubes is about 2 and 
individual values range from 0 to 6. This correspond to an expected value of p = 0.0002 and 
6σ=0.0006. Using the equations for the mean and the variance of the Beta distribution, the 
followings parameters a and b must be selected: 
 
a=4.0, b=19,991  
 
For this prior, the estimate of the number of defective tubes is 
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3 NUMERICAL EXAMPLE 
In the numerical example we are investigating the inspection of steam generator tubes in a 
two-loop plant. Each of both steam generators is assumed to contain N=5000 tubes. The total 
finite population of tubes is therefore set to 2N = 10 000 in all subsequent discussions. Also, 
the definition of the relative sample size always refers to 2N. For example, a 10% sample 
would consist of 1 000 tubes.  
 
All calculations are based on closed-form posterior distributions outlined in section 2.3. 
These in turn are based on Eq.( 6), which assumes “one (common) sample from both steam 
generators” (section 2.2.1). Such approach has been shown as fully equivalent to other 
randomly selected samples (see sections 2.2.2 and 2.2.3), as long as both steam generators 
belong to the same population. The discussion is however not limited to this particular case: 
Eq.( 6) is namely perfectly valid for a separate analysis of each of the steam generators. 

3.1 Uniform Prior 
The uniform prior distribution (Eq. ( 26)) assumes no a-priori knowledge on the number and 
distribution of defective tubes in the steam generators. In particular, any number of defective 
tubes is deemed to be equally probable. This results in the posterior density (Eq. ( 29)), 
which may be interpreted as the probability of having exactly k defective tubes in the 
population 2N after inspection of the random sample of size 2n revealed zero defective tubes. 
Posterior densities for some selected inspection samples are plotted together with the prior 
density in Figure 1. 
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Figure 1 Posteriors with different sample sizes with uniform prior and 0 defects found 

in the sample 

The non-informative uniform prior (Eq. ( 26)) has a value of about 10-4, which is independent 
of the number of defective tubes in the steam generator. Now, assume that a inspection of a 
small (0,5%) random sample has been performed without finding any defects in the sample. 
Our information about the uninspected tubes improved drastically (red curve in Figure 1): 
The probability of having small number of defects increased for about two orders of 
magnitude. As the same time, although not shown in Figure 1, the probability of having large 
number of defects also decreased significantly. The expected number of defective tubes, 
which was 5000 for the uniform prior, decreased to 191 (yellow dot on red curve in Figure 
1).  
 
Further increases in sample size are shown to increase the knowledge about the uninspected 
part of the population significantly. Inspecting the 20% random sample without founding any 
defects (magenta curve in Figure 1) for example results in expected number of defects at 
about 4 and in very fast decrease of probability of having larger numbers of defects. 
 
Expected number of defective tubes in the uninspected part of the population is plotted as a 
function of the sample size in Figure 2. In addition, the 90% and 99% confidence curves are 
plotted, based on the expected number of degraded tubes and its variance defined in section 
2.3.1. Without inspection, the expected number of defects is 5000. It diminishes fast with 
increasing the inspection sample. 3% inspection is shown to give 90% confidence, that there 
are less than 80 defective tubes left undetected. Similarly, 20% inspection is shown to give 
99% confidence, that there are less than 11 defective tubes left undetected. 
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Figure 2 Expected number of undetected defective tubes with uniform prior and 0 

defects found in the sample 

3.2 Triangular Prior 
The numerical example has been evaluated also using the triangular prior. The resulting 
probabilities were found to differ negligible from the probabilities obtained using the uniform 
prior and are not further discussed here. This is to some extent expected, since the numerical 
difference between Eq. ( 26) and ( 27) is rather small (in the order of 10-4). 

3.3 Binomial Prior 
The binomial prior distribution (Eq.( 28)) assumes rather specific a-priori knowledge on the 
number and distribution of defective tubes in the steam generators. An example with 
expected 40 defective tubes in both steam generators is plotted as the black curve in Figure 3. 
It is clear that the probability of having less than about 10 and more than about 80 defective 
tubes in both steam generators becomes exceedingly small.  
 
The posterior distributions resulting from a set of assumed random sample sizes (Eq. ( 32)) 
are plotted together with the prior density in Figure 3. As stated in section 2.4, the 
information retrieved from the inspection of the random sample is rather weak, resulting in 
posteriors which are very close to the prior, the difference being only in the reduced size of 
the finite population. 
 
Expected number of defective tubes in the uninspected part of the population is plotted as a 
function of the sample size in Figure 4. In addition, the 90% and 99% confidence curves are 
plotted, based on the expected number of degraded tubes and its variance defined in section 
2.3.1. Without inspection, the expected number of defects is 40. With increased sample size, 
it remains nearly constant: 3% inspection is shown to give 90% confidence, that there are less 
than about 105 defective tubes left undetected. Similarly, 20% inspection is shown to give 
90% confidence, that there are less than about 102 defective tubes left undetected. 
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Figure 3 Posteriors with different sample sizes with binomial prior (p=0.004) and 0 

defects found in the sample 
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Figure 4 Expected number of undetected defective tubes with binomial prior 

(p=0.004) and 0 defects found in the sample 

4 CONCLUSIONS 
The basis for determining the size of the random sample of tubes to be inspected in 
replacement steam generators is revisited in this paper. It is assumed that the probability of 
finding a defective tube in a random sample is exceedingly small. A procedure to estimate 
the maximum number of defective tubes left in the steam generator after no defective tubes 
have been detected in the randomly selected inspection sample is proposed.  
 



A Bayesian estimation is used to obtain closed-form solutions for uniform, triangular and 
binomial prior densities describing the number of failed tubes in steam generators. It is 
shown that the particular way of selecting the random inspection sample (e.g., one sample 
from both SG, one sample from each SG, etc.) does not affect the results of the inspection 
and also the information obtained about the state of the uninspected tubing, as long as the 
inspected steam generators belong to the same population. 
 
Numerical examples are chosen to demonstrate two possible states of the knowledge existing 
before the inspection of the tubing. First, virtually no knowledge about the state of the steam 
generator tubing before the inspection is modeled using uniform and triangular prior 
densities. It is shown that the knowledge about the uninspected part of the tubing strongly 
depends on the size of the sample inspected. Further, even small inspection samples may 
significantly improve our knowledge about the uninspected part. Quantitative results for a 
typical batch of two steam generator with 5000 tubes each show that random inspection of 
about 3% of tubes with zero defects found indicates with 90% confidence that less than 80 
defective tubes are left in the uninspected part of the tubing.  
 
On the other hand, rather strong belief on the state of the tubing prior to the inspection is 
modeled using binomial prior density. In this case, the knowledge about the uninspected part 
of the tubing is virtually independent on the size of the sample. Furthermore, it is shown 
qualitatively and quantitatively that such inspection brings no additional knowledge on the 
uninspected part of the tubing. 
 
The confidence to be placed in the results of sampling inspection therefore depends mainly 
on the knowledge about the defective tubes existing prior to the inspection. As a practical 
guide, the sampling inspection (with uniform prior) may be trusted as long as no defects are 
detected. With first failures detected, however, other inspection approaches might give more 
reliable results. This will be the topic of future investigations. 
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