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ABSTRACT 

The multiscale model is proposed to explicitly account for the inhomogeneous 

structure of polycrystalline materials. Grains and grain boundaries are modeled 

explicitly using Voronoi tessellation. The constitutive model of crystal grains utilizes 

anisotropic elasticity and crystal plasticity. Commercially available finite element 

code is applied to solve the boundary value problem defined at the macroscopic 

scale. No assumption regarding the distribution of the mesoscopic strain and stress 

fields is used, apart the finite element discretization. The proposed model is then 

used to estimate the minimum size of polycrystalline aggregate of selected reactor 

pressure vessel steel (22 NiMoCr 3 7), above which it can be considered 

macroscopically homogeneous. Elastic and rate independent plastic deformation 

modes are considered. The results are validated by the experimental and simulation 

results from the literature. 
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1 INTRODUCTION 

During a severe accident the pressure boundary of reactor coolant system can be 

subjected to extreme loads, which might cause its failure. Reliable estimation of 

extreme deformations can be crucial to predict the course of events and estimate the 

potential consequences of severe accident. Conventional structural mechanics has 

been traditionally applied to model and predict the response of materials and 
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structures. However, the models of inelastic deformation are size and scale 

independent. In contrast, there is considerable experimental evidence that plastic 

flow in crystalline solids is inherently size dependent over a wide range of size 

scales. It is over the mesoscale size range – scale of grains in polycrystalline 

materials – that key deformation and fracture processes in a variety of structural 

materials take place (Needleman, 2000). 

 

One of the most important drawbacks of conventional structural mechanics remains 

the idealization of inhomogeneous structure of materials (Nemat-Nasser and Hori, 

1993). It might therefore fail to predict the material behavior, when the 

inhomogeneities start to dominate its response. For large structures (compared to the 

size of inhomogeneities), these effects typically become dominant while approaching 

limit loads. However, for relatively small structures, the effects of inhomogeneities 

may become noticeable already at the level of normal service loads (Kröner, 1986b; 

Needleman, 2000). 

 

A variety of approaches, which tried to predict the effective overall behavior of the 

polycrystalline aggregate from a known behavior of the monocrystal, developed over 

the years. These include the earliest approaches by Voigt (Voigt, 1889) and Reuss 

(Reuss, 1929), who did not consider any particular grain shape. Other more recent 

examples of simplified grain geometries – with increasingly sophisticated overall 

treatment of the problem – include squares (Kad et al., 1995), cubes (Frank et al., 

2003), and Wigner-Seitz cells (Beaudoin et al., 2000). These approaches provided 

reasonable estimates of the effective overall behavior of the polycrystals, however 

they paid little attention to the details of the mesoscopic behavior.  

 

Recent fast development of computers enabled expansion of models with 

increasingly realistic treatment of mesoscopic features, including the shapes of the 

grains. Models, which use stochastic methods such as Voronoi tessellation to 

accommodate the grain structure, were introduced only recently (for review, see for 

example (Beaudoin et al., 1995), (Barbe et al., 2001), and (Cailletaud et al., 2003)). 

The most sophisticated models applied explicit modeling of the grain boundaries by 

fitting the computational cells into the Voronoi tessellation (e.g., (Ghosh et al., 1995; 

Weyer, 2001; Kanit et al., 2003)). This increases the potential to predict the local 



deformations including for example shear banding and also provides the framework 

to simulate local damage mechanisms. However, these models typically concentrated 

on a few selected mesoscopic features and simplified or neglected others.  

 

Crystal plasticity, which assumes that the crystalline slip is a predominant 

deformation mechanism of monocrystal, is typically implemented in these models to 

describe inelastic material behavior of the basic constituents (e.g., monocrystals). 

Finite element method is used as a standard tool for obtaining sub-grain stress and 

strain fields (Needleman, 2000; Cailletaud et al., 2003).  

 

A generalized multiscale model of polycrystalline aggregate, which overcomes the 

a priori assumptions applied by previous approaches, is therefore proposed. The 

most distinctive features of the proposed multiscale model, which offers 

minimization of the a priori assumptions applied by previous approaches are:  

(1) Explicit modeling of grains and grain boundaries using the Voronoi 

tessellation, which allows explicit account of incompatibility strains at the 

grain boundaries, and offers a significant potential to utilize specific models 

of grain boundaries, including intergranular damage, in the future. 

(2) Defining and solving the boundary value problem at the macroscopic level 

with commercially available finite element solver. 

(3) No a priori assumptions on the sub-grain stress and strain field distribution 

are used, apart from the finite element discretization. 

 

The analysis is limited to 2-D structures due to the high computational efforts. The 

proposed model is however easily extendable to 3-D.  

 

In the numerical examples, the proposed model is used to estimate the minimum size 

of polycrystalline aggregate above which it can be considered macroscopically 

homogeneous. This can be used as an orientation value to predict the lower bound of 

domain of the conventional structural mechanics. The material properties were 

selected to mimic the behavior of the German reactor pressure vessel 22 NiMoCr 3 7. 

This analysis was performed as a part of the LISSAC (Limit Strains for Severe 

Accident Conditions) project (Krieg and Seidenfuß, 2003; Cizelj et al., 2002), which 

among others tried to experimentally determine the size effect in inelastic 



deformations by exploring a series of geometrically similar tensile specimens with 

sizes ranging from 4 to 400 mm. The predicted RVE sizes are confirmed by the 

experimental results of the LISSAC project and by comparison with computational 

results published by (Nygards, 2003).  

 

In addition, the potential of the proposed model for applications in damage processes 

involving intergranular cracking was explored and reported elsewhere (Cizelj and 

Riesch-Oppermann, 2002; Cizelj and Kovač, 2003). The proposed model was also 

used to predict the overall properties and anisotropy of small polycrystalline 

aggregates (smaller then the representative volume element) (Kovač, 2004) and 

estimation of correlation length (Simonovski et al., 2004; Simonovski et al., 

Submitted). 

2 THEORETICAL BACKGROUND 

The proposed model of polycrystalline aggregate can be essentially divided into 

modeling the random grain structure, calculation of strain/stress field and obtaining 

overall properties of the aggregate. Basic features are:  

• The random polycrystalline structure is represented by a Voronoi tessellation. 

• The constitutive model of randomly orientated crystal grains (monocrystals) 

assumes anisotropic elasticity and crystal plasticity. The latter assumes that 

plastic deformation is caused by crystalline slip on predefined slip planes of 

crystal lattice. Slip planes and directions are defined by random orientation of 

crystal lattice. Finite element method is used to obtain numerical solutions of 

strain and stress fields.  

• The overall properties of the polycrystalline aggregate are obtained by 

homogenization procedure.  

• The representative volume element is estimated by comparison of the overall 

properties of polycrystals produced by complementary set of macroscopic 

boundary conditions. 

 

2.1 Voronoi Tessellation 

The concept of Voronoi tessellation has recently been extensively used in the 

materials science, especially for modeling random microstructures like aggregates of 



grains in polycrystals (Riesch-Oppermann, 1999; Weyer et al., 2002; Nygards, 

2003), patterns of intergranular cracks (Cizelj and Riesch-Oppermann, 2002), and 

composites (Johansson, 1995). A Voronoi tessellation represents a cell structure 

constructed from a Poisson point process by introducing planar cell walls 

perpendicular to lines connecting neighboring points. This results in a set of convex 

polygons/polyhedra (Figure 1) embedding the points and their domains of attraction, 

which completely fill up the underlying space. All Voronoi tessellations used for the 

purpose of this paper were generated by the code VorTess (Riesch-Oppermann, 

1999).  

 

Discretization of the Voronoi polygons into triangular finite elements is 

straightforward. Unfortunately, the numerical quality of triangular finite elements is 

generally poor. Planar quadrilateral elements were therefore used in this paper. One 

of the basic requirements for reliable finite element analysis is suitable shape of the 

finite elements in the mesh. The reliability of analysis can be improved, if only 

"meshable" tessellations are taken into account. Use of "meshable" tessellations 

poses limitations to tolerable distortion from ideally square shape of finite elements, 

which cause that only a subset of all possible tessellations is used in the analysis. 

Such bias is considered to be small compared to the error caused by the 2-D 

approximation of grain structure (Weyer, 2001). Further details on "meshable" 

tessellations and automatic meshing algorithms are employed in this paper given in 

(Weyer et al., 2002).  

 

2.2 Constitutive Model of Monocrystal 

The main features of the elasto-plastic constitutive model of monocrystal are briefly 

explained below. 

 

Each crystal grain in the polycrystalline aggregate is assumed to behave as an 

anisotropic continuum (Nye, 1985). Random orientation of crystal lattice differs 

form grain to grain. Constitutive relations in linear elasticity are given by the 

generalized Hooke's law: 

 klijklij C εσ = , (1) 



where σij represents the second rank stress tensor, Cijkl represents the fourth rank 

stiffness tensor and εij represents the second rank strain tensor. Indices i, j, k and l are 

running from 1 to 3. The inverse of the stiffness tensor is called compliance tensor 

Dijkl and is defined as:  

 klijklij D σε ⋅= . (2) 

 

Crystal plasticity used in the proposed model follows the pioneering work of Taylor 

(Taylor, 1938), Hill and Rice (Hill and Rice, 1972) and Asaro (Asaro, 1983). It is 

assumed that the plastic deformation is a result of crystalline slip only and the 

crystalline slip is driven by resolved shear stress τ(α) (Asaro, 1983; Huang, 1991): 

 ( ) ( ) ( )ααα στ jiji sm ⋅⋅= , (3) 

where α-th slip system is defined by a combination of slip plane (determined by 

normal mi
(α)) and slip direction (sj

(α)). The number of slip systems and their 

orientations depend on the crystal lattice. Stress rate can be defined as:  

 ( ) ( ) ( ) ( ) ( ) ( )( )






 +−⋅=−⋅= ∑
α

αααααγεεεσ
ijji

msmsCC klijkl
p
klklijklij &&&&&

2
1 , (4) 

where ijσ&  is the stress rate tensor, klε&  is the strain rate tensor, p
klε&  is the plastic strain 

rate tensor and γ& (α) is the slipping rate of the α-th slip system. The slipping rate γ& (α) 

is assumed to be governed by the resolved shear stress τ(α) in a visco-plastic 

framework (Huang, 1991): 
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where a& (α) is reference strain rate, n the strain rate sensitivity parameter and g(α)
 the 

current strain hardened state of the crystal. In the limit as n approaches infinity this 

power law approaches that of a rate-independent material. The current strain 

hardened state g(α) is defined by: 

 ( ) ( )β

β
αβ

α γ&& ∑= hg , (6) 



where hαβ are the slip hardening moduli. Different proposals of hardening moduli 

could be found in literature (e.g., (Asaro, 1983; Bassani and Wu, 1991)), all of them 

relying on empirical models. Peirce et al. (Peirce et al., 1982) and Asaro (Asaro, 

1983) hardening law is used in numerical example. Self- (hαα) and latent-hardening 

moduli (hαβ) are defined as:  
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where h0 is the initial hardening modulus, τ0 the yield stress, which equals the initial 

value of current strength g(α)(0), τS the break-through stress where large plastic flow 

initiates, γ the cumulative slip and q is hardening factor.  

 

A user subroutine (Huang, 1991), which incorporates anisotropic elasticity and 

crystal plasticity with finite-strain and finite-rotation formulations, was used in the 

commercially available finite element code ABAQUS/Standard (ABAQUS/Standard, 

2002).  

2.3 Overall Properties of the Polycrystalline Aggregate 

The boundary value problem is defined and solved at the macroscopic level. 

However, explicit modeling of the grain structure including grain boundaries causes 

that the main results of the proposed model are the mesoscopic strain and stress 

fields. To obtain the overall macroscopic properties of the polycrystalline aggregate, 

appropriate homogenization of the mesoscopic fields is necessary. The following 

algorithm has been used: 

• The mesoscopic stress L
ijσ  and strain L

ijε  tensors in each integration point are 

rotated from the local to the global coordinate system: 

 jlik
L
ij

G
ij QQ ⋅⋅= σσ ,       jlik

L
ij

G
ij QQ ⋅⋅= εε , (8a, b) 

where G
ijσ  and G

ijε  represents stress and strain tensor, respectively, in the 

global coordinate system and Qij represents rotation tensor from the local to 

the global coordinate system. Current rotation of the material in the specific 

integration point depends on initial random orientation and the change due to 

the finite rotation formulation. 



 

• The macroscopic stress 〈σij〉 and strain 〈εij〉 tensors are obtained by averaging 

the mesoscopic stress and strain tensors in the global coordinate system over 

the volume of the polycrystalline aggregate V: 

 ∫=
V

G
ijij dV

V
σσ 1 ,       ∫=

V

G
ijij dV

V
εε 1 . (9a, b) 

• The equivalent macroscopic stress and strain are then calculated from the 

macroscopic stress and strain tensors to make results comparable with 

uniaxial tensile tests. 

 

2.4 Estimation of Representative Volume Element Size 

Geometrically similar components, which are larger than the representative volume 

element (RVE), will all have the same macroscopic response, regardless of their size 

and their inhomogeneity (Nemat-Nasser and Hori, 1993). However, this is not the 

case with components smaller than RVE, where microstructure might play an 

important role on the macroscopic response. RVE is therefore defined as the 

minimum size of the polycrystalline aggregate above which the influence of grain 

structure of the selected material on the macroscopic response is negligible. From the 

computational viewpoint, the RVE size is defined as equivalence of stiffness C*
ijkl 

and inverse compliance D*
ijkl tensors (Kröner, 1986a): 

 ( ) 1** −≅ ijklijkl DC . (10) 

Equation (10) is in general not valid for the polycrystalline aggregates smaller than 

RVE. As a consequence, analysis of parts smaller than RVE with the methods of 

conventional structural mechanics might not yield meaningful results.  

 

The different behavior of both tensors is governed by the size of the aggregate and 

the macroscopic boundary conditions (Nemat-Nasser and Hori, 1993). The 

macroscopic stress 〈σij〉 and strain tensors 〈εkl〉 are completely defined by the 

properties of and interaction between the monocrystals and may be used to estimate 

the macroscopic stiffness C*
ijkl or macroscopic compliance tensor D*

ijkl: 



 klijklij C εσ *= ,       ijijklkl D σε *= .  (11a, b) 

It is useful to note here that the macroscopic stiffness tensor (eq. (11a)) assumes 

stress driven macroscopic boundary conditions, while the macroscopic compliance 

tensor (eq. (11b)) assumes displacement driven macroscopic boundary conditions, 

Figure 2. 

 

For elastic and rate independent inelastic materials with nearly linear stress strain 

relationship, equation (10) can be reasonably approximated by: 

 
deqseq σσ ≅ , (12) 

where 〈σeq〉 denotes the macroscopic equivalent stresses and indexes s and d denote 

stress and displacement boundary conditions, respectively.  

 

The size of the RVE can be extrapolated from the known behavior of a set of 

polycrystalline aggregates, which are smaller than RVE (Weyer, 2001). Relation 

between the macroscopic stiffness and compliance tensors for polycrystalline 

aggregates smaller than RVE can be written as (Weyer, 2001): 

 ( )RVEijmnklmnijkl VVOIDC +=⋅ ** , (13) 

where VRVE represents the RVE size, V size of the polycrystalline aggregate, Iijmn 4-th 

rank unit tensor and O a residuum. Assuming proportionality between number of 

grains in the polycrystalline aggregate and its size and validity of eq. (12), one can 

use (Kovač and Cizelj, 2002):  

 ( )RVE

deq

seq
iiO+= 1

σ

σ
, (14) 

where iRVE represents the number of grains in RVE and i the number of grains in the 

polycrystalline aggregate smaller than RVE. It is customary to assume that RVE is 

achieved when residuum O is smaller than 1% (Kanit et al., 2003). 

 



For polycrystalline aggregates with periodic boundary conditions, Nygards (Nygards, 

2003) suggested a measure for the RVE, which is based on the scatter caused by 

initial random crystal lattice orientations: 

 
( )

aveeq
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S
O

σ
σ

= , (15) 

where S(σeq) is standard deviation of equivalent stress variability due to the crystal 

lattice orientation, σeq ave is average equivalent stress (obtained from a large enough 

polycrystalline aggregate, e.g., 500-grains aggregate), and OS is residuum. The RVE 

is achieved at OS < OS th, with typical choice of OS th being again about 1%.  

3 NUMERICAL EXAMPLE AND DISCUSSION 

In the numerical example, the performance of the proposed model is demonstrated. 

First, the mesoscopic fields are shown. Then, the number of grains in the aggregate 

for which the effect of the initial orientations and the macroscopic boundary 

conditions becomes negligible for the macroscopic behavior (i.e., the representative 

volume element, RVE) is estimated. The predicted RVE sizes are confirmed by the 

experimental results of the LISSAC project and by comparison with computational 

results published by (Nygards, 2003). 

3.1 Input Data 

A set of Voronoi tessellations with 14, 23, 53, 110 and 212 grains was used in the 

analysis to simulate the polycrystalline aggregates with respective sizes 0.1 mm × 

0.07 mm, 0.13 mm × 0.09 mm, 0.2 mm × 0.14 mm, 0.28 mm × 0.2 mm, and 0.4 mm 

× 0.28 mm. The average grain size of 0.023 mm was assumed, as reported within the 

LISSAC project (Materna-Morris et al., 2002). Only one realization of tessellation 

per selected size was analyzed. Each tessellation was simulated with 30 different 

random orientations of crystal lattices, each of them with two complementary stress 

and displacement boundary conditions (Figure 2). This is consistent with observation 

that the variability due to grain shapes is relatively small compared to the variability 

due to grain orientations (Weyer, 2001). 

 



The pressure vessel steel 22 NiMoCr 3 7 with bainitic structure and body-centered 

cubic (b.c.c.) crystals is simulated in the numerical example. Three families of slip 

planes: {110}, {112}, and {123} and one family of slip directions: <111> were 

modeled within the b.c.c. crystal lattice (Nemat-Nasser et al., 1998). Elasticity 

properties of the selected material are obtained from the literature for α-Fe with 

b.c.c. crystal lattice (Nye, 1985; Grimvall, 1999). It is assumed that small amounts of 

alloying elements do not change the elastic properties of a crystal grain significantly. 

The nonzero components of the stiffness tensor (eq. (1)) are therefore taken as 

Ciiii = 230 GPa, Ciijj = 135 GPa and Cijij = 117 GPa. Material parameters for plasticity 

were selected as follows (Julisch, 2002). The strain rate sensitivity parameter n = 50 

and the reference strain rate a& (α) = 0.001 s-1 (eq. (5)) were selected to result in strain 

rate independent behavior (Nemat-Nasser et al., 1998). The initial hardening 

modulus h0 = 70 MPa, the break-through stress τS = 15.5 MPa, yield stress 

τ0 = 155 MPa and hardening factor q = 1 (eq. (7)) were optimized to comply with a 

series of low velocity tensile tests performed at room temperature within the LISSAC 

project (Kieselbach, 2001).  

3.2 Mesoscopic Strain/stress Fields 

The mesoscopic stress and strain fields represent the direct result of the proposed 

model. Typical examples of mesoscopic fields obtained are shown in Figure 3 left 

(equivalent Von Mises stress) and Figure 3 right (equivalent strain). The aggregate 

with 212-grains and macroscopic displacement boundary conditions is shown, loaded 

biaxially to p1 = 1155 MPa and p2 = 578 MPa (depicted with circle in Figure 4). This 

particular loading condition was selected since it clearly illustrates the extremely 

inhomogeneous nature of the mesoscopic fields: while the macroscopic equivalent 

stress (〈σeq〉 = 518 MPa) exceeded the macroscopic yield strength (σY = 440 MPa) 

significantly leading to the macroscopic equivalent strain of about 6%, there is still a 

considerable fraction of grains where none or negligible slipping has taken place. 

 

The local mesoscopic equivalent stresses depicted in Figure 3 left are up to 60% 

higher than the macroscopic (average) equivalent stress. The stress field also shows 

high gradients at the grain boundaries, which are mainly caused by the incompatible 

deformation of neighboring grains. The plastic strain is concentrated within shear 

bands (Figure 3 right). The local equivalent strains are up to 500% higher than 



macroscopic equivalent strain. Shear bands typically develop at the grain boundaries 

(they are less pronounced when passing through the grains) in directions of about 50° 

from x-axis. The typical distance between shear bands is in the order of the grain 

size. The characteristic appearance of mesoscopic features (e.g., stress gradients 

along the grain boundaries and shear bands) clearly highlights the advantages of the 

explicit modeling of the grains and grain boundaries. 

 

3.3 Estimation of RVE Size  

The representative volume element (RVE) is defined as the minimum number of 

grains in the aggregate, for which the effect of the initial orientations and the 

macroscopic boundary conditions become negligible for the macroscopic behavior. 

In general, the RVE is expected to depend on the stress-strain relationship. The 

nearly bi-linear behavior of the stress-strain relation (as for example depicted in 

Figure 4) suggests that for this particular material it is sufficient to estimate the RVE 

at two distinct points, selected as follows.  

• For elastic deformation mode at biaxial remote load of p1 = 200 MPa and 

p2 = 100 MPa (Figure 2). 

• For plastic deformation mode at biaxial remote load p1 = 1094 MPa and 

p2 = 547 MPa. 

The size of the representative volume element size was extrapolated from the results 

obtained for aggregates with 14, 23, 53, 110 and 212 grains, each of them analyzed 

for 30 different random orientations of crystal lattices and two complementary 

boundary conditions. 

 

The macroscopic equivalent stresses and strains at given fixed remote load for all 

analyzed aggregates are shown in Figure 5. The values obtained for elastic 

deformation mode are shown on the left and the ones for plastic deformation mode 

on the right. d and s in the legend refer to displacement and stress boundary 

conditions, respectively. ave refers to values averaged over 30 different randomly 

orientated crystal lattices for each boundary condition. The numbers following 

abbreviation denote number of grains in the respective aggregate. The trends of 



averaged values for displacement and stress boundary conditions are depicted with 

thick arrows, marked with trend d and trend s, respectively. 

 

Two effects appear with increasing number of grains: (1) decrease of scatter and (2) 

clear trend of average values towards each other. For elastic deformation mode 

(Figure 5 left) the common average (〈εeq〉 = 0.0515% and 〈σeq〉 = 95.2 MPa) coincide 

with the analytical solution for equivalent homogenous material with material 

parameters: E = 210 GPa and ν = 0.29. The analytical solution for equivalent 

homogenous material for plastic deformation mode could unfortunately not be given. 

However, the expected value for equivalent homogenous material (〈εeq〉 = 5.0% and 

〈σeq〉 = 503 MPa; Figure 5 right) was determined as point of intersection of trends of 

average values obtained by two complementary sets of boundary conditions. 

 

It can be also noted that the displacement boundary conditions consistently cause 

stiffer response as compared to the stress boundary conditions. The scatter of results 

in Figure 5 right has increased tremendously as compared to Figure 5 left. This is 

caused by the extremely inhomogeneous mesoscopic fields, as illustrated in Figure 3. 

A considerable fraction of the aggregate could remain elastic even at macroscopic 

equivalent strains exceeding 5%. The amount of elastic grains at given macroscopic 

equivalent strain varies considerably and is strongly influenced by the initial random 

orientations of the lattice. 

 

In order to estimate the size of the RVE, it is useful to rearrange the data from Figure 

5 in the following way: first, fix the macroscopic equivalent strain at 〈εeq〉 = 0.0515% 

and 5.0% for elastic (left) and plastic deformation mode (right), respectively. Then, 

plot the average stresses obtained for 30 random lattice orientations as a function of 

number of grains in the aggregate for both boundary conditions (Figure 6). The 

scatter of stresses is depicted by the error bars placed at ± one standard deviation. 

Finally, fit the average values with a third order polynomial (Weyer, 2001).  

 

Figure 6 shows rather fast decrease of scatter due to the random orientations of 

lattice with increasing number of grains. Also, the clearly different behavior of 

results for aggregates with complementary boundary conditions tends to converge 



with increasing number of grains. It is worth noting that the averages and standard 

deviations of stresses plotted in Figure 6 left and Figure 6 right could also be used for 

example to predict the scatter of material properties for the continuum based analysis 

of components smaller than RVE. More details about predictions of material 

properties of small aggregates is available in (Kovač, 2004). 

 

 

Fitted lines, extrapolated towards large number of grains, clearly tend to each other. 

The common average for the elastic deformation mode coincides with the anticipated 

analytical solution (Figure 6, left). The RVE is now estimated in accordance with eq. 

(14). Assuming the residuum O of about 1%, the RVE is to be at least 372 grains for 

elastic deformation mode and 763 grains for plastic deformation mode. This 

corresponds to the polycrystalline aggregates of 0.53 mm × 0.38 mm (elastic) and 

0.78 mm × 0.55 mm in size (plastic). 

3.4 Validation of Results  

From discussion in Section 3.3 it clearly follows that the size of the RVE is closely 

linked to the scatter of the mesoscopic fields. This is consistent with the measure for 

the RVE (residuum OS, eq. (15)) suggested for the polycrystalline aggregates with 

periodic boundary conditions by Nygards (Nygards, 2003). Nygards analyzed both 2-

D and 3-D aggregates and provided empirical relations between the residuum OS and 

number of grains for aggregates of various anisotropically elastic cubic metals, 

including iron, loaded by uniaxial and equibiaxial remote loads. It is therefore useful 

to compare the results of the proposed model with results obtained by Nygards. 

 

Figure 7 summarizes the comparison of results obtained by the proposed model and 

by 2-D model of Nygards. Three sets of curves are plotted for three different types of 

loading. For uniaxial load, the curve proposed by Nygards for aggregate with 

periodic boundary conditions is clearly embedded by the results of the proposed 

model with complementary boundary conditions. Good agreement is also observed in 

the case of equibiaxial loading. Finally, all groups of curves clearly tend to a single 

curve with increasing number of grains. It is therefore reasonable to expect that the 

results of the proposed model for the 2:1 biaxial case are also correct. 

 



The RVE’s deduced from Figure 7 with OS = 1% are 102 grains for equibiaxial load, 

between 110 and 210 grains for the 2:1 biaxial load and 379 grains for the 

equibiaxial load. This differs considerably from the 372 grains for 2:1 biaxial load 

estimated in Section 3.3. This difference primarily reflects the importance of the 

macroscopic boundary conditions, especially when analyzing aggregates smaller than 

RVE. 

 

Qualitative equivalence of 2-D and 3-D models of the grain structures is clearly 

shown in (Nygards, 2003). A notable difference however remains in the estimated 

size of the RVE. 3-D RVE estimates result in approximately twice as many grains 

per aggregate as 2-D estimates. This results in slight conservativity of the RVE sizes 

estimated with 2-D models. 

 

Indirect confirmation of the estimated RVE for plastic deformation follows from the 

experimental results of the LISSAC project (Krieg and Seidenfuß, 2003). A series of 

tensile tests of the pressure vessel steel 22 NiMoCr 3 7 were executed with 

geometrically similar specimens of sizes between 4 and 400 mm. While some 

moderate size effects were observed at large strains dominated by the development 

of ductile damage, no size effects were observed within the plastic deformation until 

strains of about 10%. This is consistent with our estimate of the RVE for plastic 

deformation, which suggest macroscopically homogeneous plastic deformation in 

specimens exceeding roughly 1 mm in size.  

4 SUMMARY 

A novel multiscale model of elasto-plastic behavior of a polycrystalline aggregate 

was proposed in this paper. Its development was motivated by accounting for the 

most important features of the grain structure of polycrystalline materials, which is 

neglected by the conventional continuum mechanics. The Voronoi tessellation is 

used to explicitly model the random grain structure. The crystal grains are modeled 

as a randomly oriented monocrystals obeying continuum elasto-plastic constitutive 

models. Compatible displacements are assumed along the explicitly modeled grain 

boundaries, which gives rise to the incompatibility strains at the grain boundaries. 

The boundary value problem is defined and solved at the macrosopic scale using 

standard crystal plasticity models, commercially available finite element solver and 



two complementary sets of macroscopic boundary conditions. The basic reason for 

the current limitation to 2-D structures is very high computational intensity of the 

model.  

 

The material properties used in the numerical examples have been selected to 

simulate the reactor pressure vessel steel 22 NiMoCr 3 7. Elastic and rate 

independent plastic deformation modes were considered. The mesoscopic stress and 

strain fields were found to be extremely heterogeneous. This includes development 

of high stress gradients along the grain boundaries and shear bands, both being 

consequences of explicit modeling of the grain boundaries.  

 

The proposed model was then used to estimate the minimum size of polycrystalline 

aggregate, above which it can be considered macroscopically homogeneous (the 

representative volume element, RVE). This can be used as an orientation value to 

predict the lower bound of domain of conventional structural mechanics (below 

which it is not able to describe the polycrystalline material behavior accurately).  

 

The RVE size was estimated from the differences of response caused by 

complementary boundary conditions. The displacement boundary conditions caused 

consistently stiffer response of the polycrystalline aggregate than the stress boundary 

conditions. The difference in response however rapidly diminished with the 

increasing number of grains in the aggregate and resulted in the estimate of the RVE. 

Due to the nearly bi-linear nature of stress-strain curves, the RVEs were estimated at 

two points, representative for elastic and plastic deformation modes. 

 

Further validation of the model showed compliance with the series of tensile test of 

geometrically similar specimens of different sizes exceeding the estimated RVE, 

which showed no size effects for strains smaller than 10%. Comparison with 

simulation results from the literature shoved very good agreement of scatter due to 

random orientations and qualitative equivalence of 2-D and 3-D models of the grain 

structures in elastic deformation modes.  

 



Additional advantages of the proposed model include flexibility of constitutive 

model describing monocrystal and a strong potential for modeling the intergranular 

damage processes. These will be part of the future work. 
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Figure 1: Voronoi tessellation with highlighted orientations of crystal lattices 

and finite element mesh 
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Figure 2: Stress and displacement boundary conditions 

 

 



 

Figure 3: Equivalent stress [MPa] (left) and equivalent strain [%] (right)  

for 212-grain polycrystalline aggregate with displacement boundary conditions 
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Figure 4: Macroscopic response of the 212-grains polycrystalline 

aggregate 
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Figure 5: Scatter of macroscopic equivalent strain/stress for elasticity (left) and 

plasticity (right) 

 



 
Figure 6: Convergence of macroscopic equivalent stresses in elasticity (left) and 

plasticity (right) 

 

 



Figure 7: The residuum OS of scatter due to random crystal lattice orientations 

as a function of number of grain in the polycrystalline aggregates 

subjected to elastic deformation 
 


