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RAbstract

A model of microstructurally short cracks that accounts for random grain geometry and crystallographic orientations is coupled with
crystal plasticity constitutive model. A short crack is then inserted in the slip plane in one of the grains at the model top boundary and
extended into one of the available slip planes of the neighboring grain at monotonic remote load of 0.96Rp0.2. Crack tip opening (CTOD)
and sliding (CTSD) displacements are then calculated for several different crystallographic orientations and crack lengths. As the crack is
contained in a single grain the crystallographic orientation of the neighboring grain can change the crack tip displacements by up to 26%,
however, the displacements change by up to a factor of 10, once the crack is extended beyond the grain boundary into the next grain.
Significant CTSD values were observed in all the analyzed cases pointing to mixed mode loading. Another important observation is that
the random crystallographic orientations of grains beyond the first two crack-containing grains affect the CTOD by a factor of up to 4.4.
This effect decreases slightly with increased crack length.
� 2007 Published by Elsevier Ltd.
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R1. Introduction

Microstructurally short cracks behave differently from
the long ones. Their propagation rate and path is strongly
influenced by local microstructural features such as grain
boundaries, crystallographic orientations, inclusions, voids
and material phases, etc. [1,2]. Often initiated from persis-
tent slip bands these cracks propagate on the slip planes,
creating zigzag patterns [3–5] when changing the slip plane.
The crack tip loading is therefore generally mixed mode
with strong shear component. All these influence result in
a variable crack propagation rates. Vašek [6] for example
observed that crack propagation rates may vary signifi-
cantly for nominally identical cracks.

When creating models of such short cracks care should
be taken to incorporate mentioned microstructural fea-
52
53
54
55

0142-1123/$ - see front matter � 2007 Published by Elsevier Ltd.

doi:10.1016/j.ijfatigue.2007.01.030

* Corresponding author. Tel.: +386 (1) 5885 290; fax: +386 (1) 5885 377.
E-mail address: Igor.Simonovski@ijs.si (I. Simonovski).

Please cite this article in press as: Simonovski I, Cizelj L, The influen
Fatigue (2007), doi:10.1016/j.ijfatigue.2007.01.030
tures. In recent years several authors applied crystal plas-
ticity material models [7–9] but without the explicit grain
shape modeling. Several works use rectangular grain
shapes [10,11]. Random grain geometry and crystal plastic-
ity have been used in [12] where calculated J-integral values
are compared with the isotropic case while in [13] scatter of
the J-integral values has been determined. Both works deal
with intergranular cracks.

In authors’ previous studies a combination of random
grain geometry and crystal plasticity was used to study
the crack tip slip activity and the influence of formation
of shear bands on the crack tip displacements [14]. For a
bicrystal configuration the preferential slip plane was deter-
mined in [15]. Fixed crack length was used in both works.
The present study, however, investigates the influence of
crystallographic orientations on the crack tip displacements
for an advancing crack, including cases where the crack
passes the grain boundary. The relation between the crack
length, crack tip displacements and their spread due to
the random grain orientations is studied. Specifically, we
ce of grains’ crystallographic orientations on advancing ..., Int J
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want to see the way in which random grain orientations
change the crack tip displacements with the increased crack
length.
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Fig. 2. Relation between the crack plane and slip planes P2 and P4 at
crystallographic orientation of a = 0�. Left: crack in grain 38. Right: an
example of a crack in grain 124.
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2. Model description

2.1. Constitutive model

Monocrystal’s elastic behaviour is generally anisotropic
and is governed by the generalized Hooke’s law,
re

ij ¼ Cijkl�
e
kl, where re

ij represents the second-rank elastic
stress tensor, Cijkl the fourth-rank stiffness tensor and �e

kl

the second-rank elastic strain tensor. The number of inde-
pendent elastic constants for a cubic crystal system is 3.

The material’s plastic behaviour at the grain level is
modeled with crystal plasticity theory [16,17] with an over-
view given below. Further details on the kinematics are
given in [18]. The basic assumption is that the material
flows through the crystal lattice via dislocation motion,
while the lattice itself, with material embedded on it, under-
goes elastic deformations and rotations. The plastic defor-
mation of a monocrystal is assumed to arise solely from
simple shear on a specific set of slip planes, see Fig. 1 with
projections given in Fig. 2. Deformation by other mecha-
nisms such as for example diffusion, twinning and grain
boundary sliding is currently not taken into the account.
The total deformation gradient is

F ij ¼ F �ik � F
p
kj; ð1Þ

where F �ik is the elastic part associated with stretching and
rotation of the lattice while F p

kj is the part of the total defor-
mation gradient due solely to slip. The velocity gradient in
the current state is given by a standard formula

Lij ¼ _F ik � F �1
kj ¼ Dij þ Xij ð2Þ

and can be expressed as a sum of the symmetric rate of
stretching Dij and antisymmetric spin tensor Xij. Dij and Xij

can be further decomposed into plastic parts (Dp
ij and Xp

ij)
and lattice or elastic parts (D�ij and X�ij), i.e., Dij ¼ D�ij þ Dp

ij
U
N

C
O

Fig. 1. Relation between the slip planes of a face centered cubic material a
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Oand Xij ¼ X�ij þ Xp
ij. Now, the plastic part of the velocity gra-

dient in the current state can be expressed as

Dp
ij þ Xp

ij ¼
X

a

_cðaÞsðaÞi mðaÞj ; ð3Þ

where the summation is performed over all active slip sys-
tems, (a), defined by their normal mðaÞi and a shearing direc-
tion, sðaÞi . _cðaÞ represents the shear rate. The cumulative slip,
c, is defined as,

c ¼
X

a

Z t

0

j _cðaÞjdt: ð4Þ

Plastic strain rate is then obtained from the symmetric part
of Eq. (3)

_�p
ij ¼

X
a

1

2
_cðaÞðsðaÞi mðaÞj þ sðaÞj mðaÞi Þ: ð5Þ

The constitutive relation of the elastic–plastic monocrystal
is now given in terms of stress and strain rates as,
_rij ¼ Cijklð_�kl � _�p

klÞ [19]. It is assumed that the shear rate
_cðaÞ depends on the stress only via the Schmid resolved
shear stress, Eq. (6). This is a reasonable approximation
at room temperature and for ordinary strain rates and
pressures [19]. Yielding is then assumed to take place when
nd the crack for a = 0�. The crack plane is aligned with slip plane P2.

ce of grains’ crystallographic orientations on advancing ..., Int J
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Fig. 4. Definitions of grain numbers, crack direction and deflection
angles, h38 and Dh124. Dots indicate most of the used crack lengths.
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the Schmid resolved shear stress exceeds the critical shear
stress s0.

_cðaÞ ¼ _aðaÞ
sðaÞ

gðaÞ

� �
sðaÞ

gðaÞ

����
����
n�1

; sðaÞ ¼ sðaÞi rijm
ðaÞ
j ; ð6Þ

_aðaÞ represents the reference strain rate, n is the strain rate-
sensitivity parameter and g(a) is the current strain-hardened
state of the crystal. In the limit, as n approaches infinity, this
power law approaches that of a rate-independent material.
The current strain-hardened state g(a) can be derived from,

_gðaÞ ¼
X

b

hab; _cðbÞ; ð7Þ

where hab are the slip-hardening moduli defined by the
adopted hardening law. In this work Peirce et al. hardening
law is used [20], where self-hardening moduli haa are defined
by:

haa ¼ hðcÞ ¼ h0sech2 h0c
ss � s0

����
����; sech ¼ 1= cosh : ð8Þ
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Fig. 3. The finite element model. Details of th

Please cite this article in press as: Simonovski I, Cizelj L, The influen
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Here h0 stands for the initial hardening modulus, s0 is the
yield stress (equal to the initial value of the current strength
g(a)(0)) and ss a reference stress where large plastic flow ini-
tiates. The latent-hardening moduli hab are determined as
E
D

P

e crack tip mesh are shown in the insert.
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hab = qh(c), (a 6¼b), where q is a hardening factor. This
model was implemented as a user-subroutine into the finite
element code ABAQUS [21] and includes versions for small
deformation theory and rigorous theory of finite-strain and
finite-rotation. The latter was used in this work.
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Fig. 5. Definition of the CTOD and CTSD.

Table 1
Crystallographic orientations for grain 124 and corresponding crack
deflection angles

Crystallographic orientation Crack deflection angle Dh124

a38 a124 Crack in SP2 Crack in SP4

9.735� 36.264� 26.528� �44�
9.735� 56.264� 46.528� �24�
9.735� 64.264� 54.528� �16�
9.735� 70.264� 60.528� �10�
9.735� 80� 70.264� �0.264�

Fig. 6. Applied crystallographic orientations of grains 38 (9.735�) and 124 (3
deflections are indicated with two values of Dh124.

Please cite this article in press as: Simonovski I, Cizelj L, The influen
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2.2. Layout of structural model

The structural model is a planar rectangular aggregate
consisting of 212 randomly sized and shaped grains. The
aggregate is a planar Voronoi tessellation generated using
code VorTESS [22]. The model results in an average grain
size of about 53 lm which is in agreement with published
values for 316L steel, reported to be between 50 and
80 lm. Standard deviation of grain sizes divided by average
grain size is reported to be 0.32 lm/lm [23]. 316L has rel-
atively weak morphological texture, with elongation of
grains in the rolling direction of about 20% [24]. This effect
was, however, not accounted for in our model. 316L is an
austenitic steel with a face centered body structure and is
used in certain nuclear power plant piping systems.

The finite element model of the grain structure with a
crack is presented in Fig. 3. Each grain is subdivided into
8-noded, reduced-integration, plane strain finite elements.
The mesh is composed out of inner, middle and outer layer.
The inner layer is defined by a rectangle of size 10 · 10 lm,
with crack tip at its center. Average element size in the
inner layer of 0.125 lm is achieved by assigning 80 ele-
ments along each of the rectangle’s sides and 40 elements
along the part of the crack pertaining to the inner layer.
Crack-containing grain (except the area of the inner layer)
and all the grains that have a common border with the
crack-containing grains compose the middle layer. Average
element size in this layer is 2.5 lm. Grains beyond the
6.264�, 56.264�, 64.264�, 70.264� and 80�). Two possible crack extension

ce of grains’ crystallographic orientations on advancing ..., Int J
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Fig. 7. The influence of different crystallographic orientations of grain 124
on the crack tip displacements. Crack in grain 124 is placed in slip plane
P2.
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middle layer compose the outer layer. Average element size
in this layer is 13 lm. The finite element meshing of the
grains in this layer is automatic and follows procedures
outlined in [25].

To avoid violations of finite element shape constraints,
only a subset of ‘‘meshable’’ Voronoi tessellations has been
considered in the analysis. The ‘‘meshable’’ tessellations
basically assume reasonably small aspect ratios of cord
lengths. Further details are available in [25]. Such approach
essentially prevents use of tessellations with very small
grains.

Each grain is assumed to behave as a monocrystal gov-
erned by the anisotropic elasticity and crystal plasticity
models as described in the previous section. The number
of grains included in the model is not sufficient to result
in a size-independent macroscopic response of the aggre-
gate (representative volume element). The overall global
response of the aggregate will therefore still slightly depend
on the applied set of crystallographic orientations and
grain sizes and shapes. Should the aggregate be larger than
the representative volume element, its overall response
would not depend on the applied set of crystallographic
orientations or grain sizes and shapes. However, the expe-
rience with similar simulations shows that the error caused
by this omission is limited to about 5% [26].

2.2.1. The crack and crystallographic orientations

A short inclined surface crack is introduced in the model.
Crack is placed in a slip plane to mimic Stage I fatigue crack.
This is achieved by first setting the angle between the crystal-
lographic [100] direction and the macroscopic X-axis of all
crystals in the model to 135� as shown in Fig. 1. The projec-
tions of slip planes are given in Fig. 2. This results in a planar
slip system model compatible with the planar macroscopic
model. Next, each crystal is rotated around the global Z-axis
by an angle a, obtained by a random generator with uniform
distribution. We will refer to this angle as crystallographic
orientation. As reported in [24] 316L steel has a fairly strong
crystallographic texture with a great number of grains hav-
ing normal direction close to Æ1 11æ and Æ100æ direction.
Æ100æ direction is less pronounced while only a few grains
exhibit a normal close to the Æ110æ direction. This texture
was not taken into account because: (a) our intention is to
maximize the scatter of the results due to crystallographic
orientations, including the texture would decrease the scatter
and (b) the effect of the texture is considered small compared
to the 2D approximation of the aggregate used in this paper.

Crystallographic orientation of the grain 38 (the first
crack-containing grain, see Fig. 4 for grain numbers) is
set to 9.375� so that the crack falls into the slip plane P2,
left-hand side of Fig. 2. For the face centered cubic mate-
rial the angle between the slip planes P2 and P4 is
2 · 35.264�. Crystallographic orientation of the grain 124
(second crack-containing grain) has to be such that the
crack is either in slip plane P2 or P4. Crack direction in
grain 124 is 315� + Dh124, where Dh124 is crack deflection
angle. Positive direction of Dh124 is in counter clockwise
Please cite this article in press as: Simonovski I, Cizelj L, The influen
Fatigue (2007), doi:10.1016/j.ijfatigue.2007.01.030
O
O

F

direction. For the crack to fall into the slip plane P2, we
select to rotate the crystal in the counter clockwise direc-
tion until the point A on the slip plane P2 falls onto the
crack, see right-hand side of Fig. 2. This condition is satis-
fied when 315� þ Dh124 ¼ a124P2

þ 90� þ 35:264� þ 180�.
Required crystallographic orientation of grain 124, for
the crack to fall into the slip plane P2, is then given by
Eq. (9). Similar arguments can be applied to obtain the
crystallographic orientation of grain 124 for the crack to
fall into the slip plane P4, Eq. (10).

a124P2
¼ ð315� þ Dh124Þ � 180� � 90� � 35:264�; ð9Þ

a124P4
¼ ð315� þ Dh124Þ � 180� � 90� þ 35:264�: ð10Þ

The crack tip opening (CTOD) and sliding (CTSD)
displacements are calculated at a distance of 2.5% of the
average grain size behind the crack tip (i.e. 0.025 · 52.9 =
1.3 lm), see Fig. 5. This is consistent with examples found
in the literature [11,27].
ce of grains’ crystallographic orientations on advancing ..., Int J
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Extensive mesh sensitivity study was performed in [28]
resulting in the optimal mesh shown in Fig. 3. The applied
mesh is expected to underestimate CTOD and CTSD by
about 4.6% and 8.4% [28], respectively, which is deemed
sufficient for the presented analysis.

2.2.2. Loading and boundary conditions

The applied macroscopic loading and boundary condi-
tions are illustrated in Fig. 3. The left and right edges are
loaded in macroscopic monotonic uniaxial tension up to
a maximum load of 0.96Rp0.2 (240 MPa) with zero shear
traction. This load is sufficient to trigger slip systems activ-
ity in all cases analyzed. The upper and lower edges are
traction free. Prevention of rigid body movement is also
imposed.

2.2.3. Material parameters

Elastic constants for AISI 316L single crystal were
taken from literature [29]: Ciiii = 163,680 MPa, Ciijj =
110,160 MPa, Cijij = 100,960 MPa. Crystal plasticity
U
N

C
O

R
R
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Fig. 8. Increasing the crack deflection angle results in a shift of position of m
point. Crack in grain 124 is placed in slip plane P2.

Please cite this article in press as: Simonovski I, Cizelj L, The influen
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parameters are also taken from [29] and are as follows:
h0 = 330 MPa, ss = 270 MPa, s0 = 90 MPa, n = 55, q =
1.0 and _aðaÞ ¼ 0:001. The material parameters in [29] were
obtained by fitting the macroscopic response of a polycrys-
talline model (macroscopic equivalent stress Ærijæ and strain
Æ�ijæ, estimated using volume averaging) to the measured
true stress–strain curve of a polycrystalline specimen. Mean
values correspond quite well with the experimental data.
The two times standard deviation of the stress values at
specific strains is on average 21 and 16.2 MPa for different
grain geometries and crystallographic orientations,
respectively.

3. Results

3.1. Variable crack lengths

In this section we examine crack tip displacements and
accumulated slip around the crack tip as the crack is
extended from the first into the second grain. The sizes of
E
D

P

aximal equivalent strain <�eq> from the crack tip point to the crack kink

ce of grains’ crystallographic orientations on advancing ..., Int J
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these two grains can influence the crack tip displacements.
A larger grain with a favourable orientation will tend to
increase the crack tip displacements compared to a smaller
grain with the same orientation [14]. In all cases we assume
a Stage I crack, which propagates only through slip planes.
The crystallographic orientation of the grain 38 is rotated
in anti-clockwise direction by an angle a = 9.735� so that
the crack at an angle of h38 = 135� falls onto the slip plane
P2. Let D38 = 70.87 lm stand for the size of the grain 38,
estimated as a square root of its area. We created a series
of models with embedded stationary cracks of different
lengths. Crack length in the grain 38 varies from 0.25D38

up to 0.739D38 which is almost on the grain boundary.
Once the crack extends across the grain boundary (into
the grain 124) its length is up to 0.5D124. D124 = 60.78 lm
is the size of the grain 124, estimated as a square root of
its area. Several crystallographic orientations of the grain
124 are used while placing the crack in either slip plane
P2 or P4, see Table 1. Fig. 6 shows the corresponding
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Fig. 9. The influence of different crystallographic orientations of grain 124
on the crack tip displacements. Crack in grain 124 is placed in slip plane
P4.
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crystallographic orientations. The orientations of all other
grains are random.

Fig. 7 shows the CTOD and CTSD displacements for
crack in grain 124 placed in the slip plane P2. Abscissa’s
value of 0 indicates the grain boundary. One can see that
different crystallographic orientations of grain 124 change
CTOD values by 26% for the case with the shortest crack.
As the crack is extended into the grain 124 this effect
becomes much more pronounced. This is to be expected
since the crack has to change its direction at the grain
boundary. It was observed that when the crack direction
turns upward to follow the slip plane P2, the maximal
equivalent strain (Mises equivalent strain), Æ�eqæ, gradually
shifts from the crack tip to the crack kink point, see Fig. 8.
This results in up to 10 times smaller crack tip displace-
ments as the crack crosses the grain boundary. Another
important observation is that in all analyzed cases signifi-
cant CTSD values were observed. Cracks are therefore of
mixed mode loading.

Fig. 9 shows crack tip displacements when the crack in
grain 124 is placed in the slip plane P4. In these cases the
crack in grain 124 can be almost perpendicular to the exter-
nal load. In fact, we see that the closer the crack extension
(in the grain 124) is to being perpendicular to the external
load, larger the CTODs and lower the CTSDs are. This
would suggest that among all the available slip planes the
crack would probably propagate through the slip plane
that is more perpendicular to the external load. This is also
in line with well known observation where small crack
gradually transitions form Stage I to Stage II where its
direction is perpendicular to the external load.

Some models of microstructurally short cracks assume
that the crack propagation rate is associated with the
amount of accumulated plastic displacement along the slip
system in front of the crack tip [30]. We therefore calcu-
lated the cumulative slip, c, for elements within the inner
Fig. 10. Cumulative slip around the crack tip. Crack in grain 124 is paced
in slip plane P2.

ce of grains’ crystallographic orientations on advancing ..., Int J
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E
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layer of elements around the crack tip, see the insert of
Fig. 3. Figs. 10 and 11 show the accumulated slip when
placing the crack in the grain 124 in either slip plane P2
or P4. The accumulated slip steadily increases until the
crack comes into the vicinity of grain boundary. Beyond
the grain boundary the orientation of the crack (defined
by the crystallographic orientation) is very important for
the accumulated slip. For a crack in slip plane P2, the
accumulated slip decreases since the crack turns upwards,
away from being perpendicular to the external load.
Opposite is true for a crack in slip plane P4. One can
see fairly good correlation of the accumulated slip with
the crack tip displacements, suggesting that we could for-
mulate a crack propagation criterion based on CTOD as
well.
U
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R

Fig. 12. CTOD histograms for a crack conta

Please cite this article in press as: Simonovski I, Cizelj L, The influen
Fatigue (2007), doi:10.1016/j.ijfatigue.2007.01.030
E
D

P
R

O
O

F

3.2. The influence of random crystallographic orientations

To evaluate the influence of random crystallographic
orientations on the CTOD we generated 100 cases where
for each fixed orientation of grains 38 (9.735�) and 124
(36.264�, 56.264�, 64.264�, 70.264� and 80�) all other grains
were randomly oriented. This was done for two different
crack lengths: (a) crack located entirely in the grain 38 with
crack length 0.5D38 and (b) crack extended up to half grain
124 size (0.5D124). Crack in grain 124 was placed in slip
plane P4. For each case a cumulative probability (distribu-
tion) function was calculated. Cumulative probability func-
tion, e.g. F(x), is defined as a probability that an observed
value (in our case calculated CTOD value) is less than or
equal to x. The corresponding results are presented in Figs.
12 and 13. For a crack located entirely in grain 38 we see
that different lines are very close to each other. This sug-
gests that the orientation of the grain 124 has a relative
small effect on CTOD values when the crack is contained
in the first cracked grain (38). However, the scatter of the
results along the abscissa shows that the orientations of
grains beyond grains 38 and 124 have a significant impact.
Changing the orientations of these grains resulted in a scat-
ter of CTOD values by a factor of 4.4.

The impact of the grain’s 124 orientation, however,
increases once the crack is extended into the grain 124. This
can be deduced from a larger distance between different
lines in Fig. 13. On the other hand, the impact of (orienta-
tions of) grains beyond grains 38 and 124 on CTOD values
decreases, manifesting itself in decreased scatter of values
along abscissa-3.3 compared to 4.4 for a previous case.
Two interlinked factors should also be mentioned once
the crack is extended into the grain 124. The first is crack
deflection. Larger CTODs are obtained when the crack
extension in grain 124 is more perpendicular to the external
ined in grain 38. Crack length is 0.5D38.

ce of grains’ crystallographic orientations on advancing ..., Int J
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Fig. 13. CTOD histograms for crack in grain 124 and placed in slip plane P4. Crack length in grain 124 is 0.5D124.
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load. Additionally, the crystallographic orientation also
affects the stiffness of grain 124. At a124 = 36.264� grain
124 has the lowest Schmid factors among the analyzed con-
figurations. However, since the crack in this case is more
perpendicular to the external load, the CTODs are the
highest. As we increase the a124, Schmid values increase,
but the CTODs decrease since the crack extension moves
away from being perpendicular to the external load. The
crack extension direction in this case seems to be the main
factor influencing the CTOD.
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4. Conclusions

A model of microstructurally short cracks that accounts
for random grain geometry and crystallographic orienta-
tions has been coupled with crystal plasticity constitutive
model. This models is used to study the influence of vari-
able crack length on crack tip displacements for different
grain orientations. In all the analyzed cases the crack tip
displacement increased with larger crack, if the crack is
contained within the first crack-containing grain.

Second crack-containing grain changes the CTOD by val-
ues by 26% for the case with the shortest crack. As the crack
is extended into the second crack-containing grain it has to
change its direction to follow the available slip plane. The
closer the slip plane is to being perpendicular to the external
load the larger the CTODs are. Further away the slip plane is
from this position, lower the CTODs are. In one of these
cases this resulted in a CTOD decrease of a factor 10.

In all analyzed cases significant CTSD values were
observed. Cracks are therefore of mixed mode loading.

The spread of the CTODs due to the random crystallo-
graphic orientations of grains decreases with increased
crack length. The ratio between maximal and minimal
Please cite this article in press as: Simonovski I, Cizelj L, The influen
Fatigue (2007), doi:10.1016/j.ijfatigue.2007.01.030
E
DCTOD is 4.4 if the crack is contained in the first grain.

When the crack is extended into the second grain this ratio
is reduced to still significant 3.3. With further increase of
the crack length the crack would become less and less
depended upon the local microstructural features so the
ratio would continue to decrease.

Finally, the model itself needs additional development.
Primarily, the crystal plasticity material model needs to
be developed further to account for certain aspects of mate-
rial cyclic behaviour. At a first stage elastic unloading
should be implemented whereas in later stages also more
complex effects such as Bauschinger effect, cyclic hardening
and softening should be considered.
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